T.C.
MARMARA UNIVERSITY
FACULTY OF ENGINEERING
COMPUTER ENGINEERING DEPARTMENT

CSE4197 - Analysis and Design Document

GRAMMAR AND SPELL CHECKING FOR
TURKISH LANGUAGE

Group Members

150116035 Furkan Kerem Eyisoy
150115013 Mert Kelkit
150114016 Riumeysa Elioz

Supervisor

Assoc. Prof. Murat Can Ganiz

January 4, 2020

1 Introduction

Although the amount of usable textual data increases day by day, thanks to mi-
croblog websites like Twitter and Facebook, most of the data obtained from these
sources is not in canonical form and it makes them hard to use for ML (Machine
Learning) purposes. Correcting these ill-formed texts requires excessive labor force.
Even though many state of the art grammar and spell checking methods have very
successful results, it has not been reached to a satisfying level in many agglutinative
languages such as Turkish since most of the methods are rule-based and language-
specific. Main aim of this project is to solve this problem by developing a new
method.

1.1 Problem Description and Motivation

The usage of social media is still increasing. On average, 500 million tweets are
posted daily on Twitter. And due to this high volume, social platforms are becom-
ing a major source of data for ML algorithms in many different fields. Especially
in Twitter, there exists different kinds of phrases that are trending and they are
changing frequently. Moreover, these trends are usually not grammatically correct.
Due to this situation, it is not possible to use these data without pre-processing
them. Commonly used old fashioned rule based algorithms developed can not keep
up with these frequent changes on social media. There has been done significant
number of studies to benefit from the above mentioned volume of data with maxi-
mum efficiency by grammar and spelling checking. Due to the difference in natures
of languages, it is still not possible to create a method that works for every language
and it is possible to say that developing more accurate methods for agglutinative
languages is still one of the most challenging tasks in NLP (Natural Language Pro-
cessing).

Major motivation behind this study is to help popular supervised and unsupervised
NLP studies by expanding the amount of usable data. For morphologically rich
languages such as Turkish, with which we concern, suffixes can create tremendously
long unique words. This causes there to be many unique words in comparison to the
corpus size, resulting in a deterioration of the training signal Because of this reason,
the following tasks are very challenging if misspellings are present in the data:

e Document classification and clustering
e Named entity recognition

e Part of speech tagging

e Training word embeddings

e Chatbots

e Sentiment analysis

e Text summarization

Our minor motivations are listed below:

e To encourage the correct use of the Turkish language by providing an appli-
cation/browser add-on.
It is a fact people do not pay attention to grammatical rules when they are
sharing their instant thoughts and moments on social media. The increase
in the misuse of any language leads to the depreciation of that language in
time. We are going to develop a publicly available application so as to prevent
depreciation of the Turkish language by helping people with instant grammar
and spell checking.

e To inspire new state of the art studies on grammar and spell checking for the
Turkish language.
To our knowledge there are not many studies that apply grammar and spell
checking with up to date deep learning architectures for the Turkish language.
Most of the studies have been done in this field are rule based and outdated. By
using a complex and open to development semi-supervised sequence2sequence
models we are hoping to inspire new studies. The semi-supervised nature of
the models may be achieved trough multitask learning, transfer learning or
other means.

We believe that in case of successful completion of our project, necessary manpower
for text preprocessing will decrease and the number of promising studies in Turkish
NLP field will accelerate. Based on this, we believe this study is important and
valuable.

We are planning to implement methods proposed in section 4 about Turkish social
media grammar and spell checking in order to create a baseline. Afterwards, we will
implement our own deep learning architectures for this task.

1.2 Scope

Our primary purpose on this project is to propose a sophisticated method and an
interface for grammar and spell checking for Turkish language on social media. To
accomplish this purpose, various NLP and ML methods will be applied. There can
be found various studies for this problem with supervised, unsupervised and rule-
based approaches, but we mostly focus on studies that support our methodology
such as, studies where morphological disambiguation and neural text normalization
are used. Most of the NLP solutions will benefit from our methodology but some
of these NLP algorithms are not in the scope of this project such as document
classification, named entity recognition and part of speech tagging. Punctuation
errors are in the scope under the domain of grammar checking. Words that are
misused in a sentence but correctly spelled are also in the scope e.g. "Adamn yuiki
cok agirdr.” is a meaningful sentence in Turkish however ”Adaman yiki ¢cok sagurds.”
is not, even though 7sagird:” is correctly spelled. This project aims to solve this
ambiguity. Implementation and comparison of present studies is in our scope, too.

1.2.1 Steps

Our planned steps are listed below:

. Literature survey on studies about Turkish text normalization.

Investigation of neural, ML and rule-based approaches.

. Gathering noisy and clean data.

Collection of publicly available tweets, dataset that Kemik Group [7] provides
as noisy data and Turkish news and Wikipedia dataset as clean data.

. Implementation of algorithms that generate synthetic data.

We will implement rule based synthetic example generation algorithm with
common misspelling patterns with various edit distances.

. Implementation of state of the art baselines.

The methodologies obtained by literature survey on step one will be imple-
mented in order to test their ability to correct spellings recently collected data
and to compare with our methodology.

. Design and implementation of Neural architecture.

We will experiment with RNN architectures such as encoder-decoder with
attention. Design of the specific architecture as well as other hyper parameters
will be tuned by hand on the training data.

. Training and testing phase.

This step is expected to be the longest and most power consuming step of
the project. During the training and testing phases results will be analyzed
frequently.

Developing an application or browser add-on

An application that dynamically checks grammar and spellings of input texts
and suggests a list of possible corrected forms of misspelled words or phrases.
Users may send feedbacks about suggestions so we can train our model with
users’ contribution.

1.2.2 Constraints

Any kind of text is sufficient as an input but it is not guaranteed or required to
correct meaningless phrases such as random character sequences like "sdfsdfa”
which stands for the English abbreviation ”lol” in Turkish social media.

It is not guaranteed to correct OOV and foreign words or phrases.

Since our corpus is limited naturally, results for OOV words may not be accu-
rate.

Our dataset will be composed of tweets, news and Wikipedia dataset.
Python and Java languages will be used in implementations.
Training time depends on computer’s processing power.

System should provide an output for a given input less than one second.

1.2.3 Assumptions

1.3

It is assumed that users will enter only non-empty input.
It is assumed that users will have an internet connection.
It is assumed that at least 80% words of any input will be Turkish.

It is assumed that there are sufficient training data for our model to be suc-
cessful.

Definitions, Acronyms and Abbreviations

Machine Learning (ML): Methods that enable computers to learn from
past data.

Natural Language Processing (NLP): A set of methods that enable ma-
chines to understand texts.

Recurrent Neural Networks (RNIN): A special type of neural network
that is specialized for sequence data.

Long-Short Term Memory (LSTM): A special type of RNN cell that
solves vanishing gradient problem caused by long term dependencies of text
sequences.

Out of Vocabulary (OOV): Words that are not present in the given vocab-
ulary.

Sequence to Sequence (seq2seq): A special architecture of RNN where
both inputs and outputs are sequences.

Graphical Processing Unit (GPU): An external processing unit for graph-
ical calculations which performs very good on parallelized matrix multiplica-
tion.

Hidden Markov Models (HMM): State machine that probabilistically
formed with past observations.

Bilingual Evaluation Understudy (BLEU): A metric that is used for ma-
chine translation tasks.

Noisy Data: Text data is not in the grammatically correct form.

Clean (Canonical) Data: Text data that is in the grammatically correct
form.

Corpus: Collection of text datasets for NLP applications.

2 Related Work

There are several studies about grammar and spell checking for Turkish language.
Some of these studies provide candidate generation for ill-formed words, some of
them just locates the ill-formed words. While relatively old studies have adopted
a rule-based approach, there have been recent studies in which neural or machine
learning approaches have been applied.

Torunoglu and Eryigit [2] proposed a cascaded architecture for Turkish text nor-
malization of social media. Authors defined 7 rule based steps in order to generate
the correct form of an ill-formed word. First, the ill-formed word is detected using
a morphological analyzer. After detection of ill-formed word, candidate generation
steps are applied sequentially. These steps focus on detecting proper nouns, abbre-
viations, recognizing social media specific keywords (mentions, hashtags, RT, etc.),
letter repetitions on words (gtzeeel - giizel), vowel restorations (slm - selam) and
deasciification (yakisikli - yakisiklr). Since all of these steps are rule based, it makes
this study language specific and it is unable to handle new misspelling patterns.
However, this method can be useful for our project in order to prepare big part of
our training data. Besides we can use this algorithm as a baseline. Steps of this
study are shown in Figure 1.

Input Tweets

Ill-Formed Word Candidate Word
Detection Generation

Letter Case Replacement
Transfermation Rules & Lookup

[Praper Noun

Detection (
Vowel Accent
Restoration Normalization
Spelling
Correction

Figure 1: Cascaded architecture for Text Normalization. [2]

J Deasciification

Béliicii and Can [3] proposed a method which combines Noisy Channel Model and
HMM(Hidden Markov Models). This study considers contextual information of a
word while correcting any spelling and grammar mistake. There is a learning model
in the proposed method which is a HMM with emission probabilities obtained by
Noisy Channel Model and this HMM serves as a language model. Learning model is
trained on the BOUN dataset [4] which consists of 3 news and 1 website datasets in
the Turkish language and it is assumed that each word or phrase is spelled correctly.
After training the language model, Zemberek [5] is used for noisy word detection. If
Zemberek finds any noisy word, it generates various candidates for the noisy word

and passes it to HMM. HMM applies Viterbi algorithm in order to find most proba-
ble candidate word of given noisy word. This study is also suitable for our training
dataset preparation. This method is another possible baseline of our project. Fig-
ure 2 shows an example use case of Viterbi algorithm.

[ajr
/ abr \
Cok L bagr | Iir] | gantEyd]

Figure 2: Viterbi algorithm for finding most probable sequence given a noisy word.

3]

Sinan Goker proposed two methods for Turkish text normalization purposes in his
M.Sc. Thesis. First one is an unsupervised method. Study uses word embeddings
so as to represent words and creates a lexicon which is a noisy-canonical(not noisy)
word pairs with their cosine similarities. After that, cosine similarity values be-
tween word pairs is converted to lexical similarity cost which is a metric that is
more lexicon-based. After that step, a bi-gram language model is constructed with
BOUN dataset. Remaining steps are candidate extraction and candidate traversal
which are very similar to the method proposed by Boliicii and Can. Method finds
candidate words for noisy words, then applies Viterbi algorithm in order to find
most probable sequence. This unsupervised method might be successful for fixing
letter repetitions and one word misspellings. But it cannot handle phrases and ab-
breviations that are misspelled very well since the method is a combination of lexical
metrics and neural word embeddings.

The second method that Goker proposes uses bidirectional LSTMs which is a su-
pervised method. This method approaches to normalization problem as a machine
translation problem, because of that it uses encoder-decoder architecture in order to
convert grammatically mistaken sentences to their canonical form. While training
the model, (noisy, canonical) word pairs are used. This method provided an effi-
cient solution, but RNN (Recurrent Neural Networks) requires huge dataset in order
to result well. If enough data is provided to encoder-decoder model, this method
will give satisfying results. The two methods proposed by Goker worked better
than Microsoft Word’s spell checker, Zemberek’s normalizer, rule based methods
and method proposed in [2]. Figure 3 shows encoder-decoder architecture.

Solak and Oflazer [6] proposes a rule based method for spell checking purposes.
This study finds and locates misspelled words by using a set of rules specific to
Turkish language. Words are parsed with a morphological analyzer, then roots and

Normalized sequence

Dimyay verelim gocuklara ! @ hashtag | #nazim }
ry A A ry A

DECODER

ENCODER

- L) - - -

H H H H |
dunyayi verelm gocuklaraas 1" #nazim

Huisy seyuence

Figure 3: Encoder-decoder architecture for translation between noisy and canonical
form. [5]

suffixes of words are passed to a finite state machine which is built by morphemic
and phonetic rules of Turkish language e.g. vowel harmony. After traversing the
finite state machine, this method checks whether given word is misspelled or not.
This method might be used for detecting abnormal words in our project. Figure 4
shows the finite state machine architecture.

Word Ovﬂb suffix

F Verb suffix
T T
Root Vowel Harmony verb noun Morphophonemic
Determination Check suffix suffix Checks
F T
F F
noun root Noun
Parser suffix
F
noun suffix

Incorrect

‘Word Structure

Figure 4: Finite state machine architecture of morphological analyzer. [6]

Goker’s encoder-decoder method is the most similar approach in the literature that
we have found to our approach. But Goker applied a word level normalization with-
out any preprocessing layers and with very limited human-annotated dataset. Our
alm is correcting spelling mistakes in sentence level with a huge amount of data
gathered from Twitter and sufficiently corrected by previously mentioned methods
automatically. Fortunately, Goker shared his encoder-decoder model’s hyperparam-
eters so we can use this hyperparameters while setting up our experiments.

Our plan also includes implementing methods proposed in [1, 2, 3] in order to exam-

7

ine their performance on new trend social media language and compare their results
with our method.

3 System Design

3.1 System Model

Basic flowchart of our system is given in Figure 5.
Discard Sentence

Non Turkish

Punctuation Language Abnormal Word Seq2Seq

Restoration Detection [1U"KISM " petection - Spelling
Corrector

—Input—ps

\J

.
Corrected Output

Figure 5: Basic flowchart of the system.

3.1.1 Punctuation Restoration

Punctuation restoration is the process of correcting punctuation mistakes in a text,
especially correcting sentence-ending punctuations. We apply this process in order
to segment text into sentences correctly, since it is important to correct spellings in
sentence level. There can be more than one sentence in an input text and the mean-
ing of these sentences can be very different from each other. If we can segment text
into sentences correctly, we can correct spellings in sentence level without mixing
the meanings of sentences.

This will be the first process applied to input given to our system. We will train a
seq2seq model for punctuation restoration. This model requires sequence pairs as
(wrong punctuaion, correct punctuation) for training. We have collected Turkish
news and Wikipedia data and we assumed that their punctuations are all correct.
We will create their wrong punctuation version by removing/replacing punctua-
tions randomly, especially sentence-ending punctuations. Input of the model will
the wrong punctuation sentence, output of the network will be the sentence that
punctuation mistakes are corrected. After preparing training data by this strategy
and training, seq2seq model is ready for correcting punctuation mistakes.

3.1.2 Language Detection

Our system discards sentences that has less than 80% Turkish words. After punc-
tuation restoration and sentence segmentation, system checks that sentence is 80%
Turkish or not. We will use morphological analyzer and we will search each word of
the sentence in the Turkish dictionary.

3.1.3 Abnormal Word Detection

If a sentence passes language detection, with more than 80% of words are Turk-
ish, system needs to label abnormal words to fix. Proper nouns and abbreviations
that could not pass language detection as Turkish, will not be labeled as abnormal
words. Each word in the sentence is divided into roots and suffixes by a stem-
mer /morphological analyzer. Then roots and suffixes checked with a Turkish dic-
tionary. After deciding which words are abnormal in the sentence, we need to check
if it is a typo error or not.

3.1.4 Typo Detection

Detected abnormal words that have smaller minimum edit distance to the words in
dictionary than some threshold value will be labeled as typo errors. The threshold
value will be determined empirically.

3.1.5 Seq2Seq Model for Spelling Correction

After all mentioned steps, the sentences will be passed to seq2seq model for spelling
correction purpose. Seq2seq models need huge amount of noisy/clean data pairs to
be trained properly and it is hard to find satisfying amount of data for Turkish.
In order to solve this problem, we will use our baseline models to create partially
or fully corrected counterparts of collected noisy data. We will also synthetically
generate noisy counterparts of collected clean data from news.

3.2 Description of The Algorithms

Word2Vec & fastText for word embeddings

There are various supervised and unsupervised methods for learning word embed-
dings. The most famous and revolutionary one is Word2Vec which was created in
2013 by Tomas Mikolov et al. at Google. Word2Vec algorithm described in [9, 10].
Word2Vec learns word embeddings by a shallow two-layer neural network. What
makes Word2Vec special is its training speed and it considers context words while
learning the embedding of target word by philosophy of ”You shall know a word by
the company it keeps.”. Basically it says what determines a word’s embedding is
the surrounding words. For example, consider two sentences "The cat sat on the
mat” and "The dog sat on the mat”. If we choose target words as “cat” and "dog”
in each sentence, their context words will be exactly same. If we train Word2Vec
algorithm with this corpus, we are expecting that words “cat” and “dog” will be
close to each other in vectoral space.

While preparing training data for Word2Vec, one of the hyper parameters of algo-
rithm is window size. Consider sentence "The cat sat on the mat.”. If we choose
window size as 2 and target word as “sat”, training data would become in the format
(context, target):

° (wt_27wt) _ (“the”, (tsat”)

° (wt—lywt) _ (“cat”, “S&t”)

° (wt+l>wt) _ (“on”, “S&t”)
° (wt+27wt) _ (“the”, “sat”)

Word2Vec has two architectures which are CBOW(Continuous bag of words) and
skip-gram. These architectures are shown in Figure 6. CBOW tries to predict target
word given context words. Skip-gram tries the predict context words given target
word. But what Word2Vec considers is not accuracy of classification; it considers
about weights learnt by backprop between input layer and projection layer which is
called ”Embedding Matrix”. Each row of this ” Embedding Matrix” corresponds to
a word vector.

INPUT PROJECTION OuUTPUT INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

wi(t+1)

S

\\'I'."‘E]

cBOwW Skip-gram
Figure 6: Word2Vec network architectures. [10]

Word2Vec has a big problem. It cannot generate embeddings for OOV words.
"O0V words” means words which are not present in the corpus that used to train
Word2Vec model. An alternative algorithm is fast Text which is an improved version
of Word2Vec. fastText also learns ngram vectors from training corpus, by this way
fastText can generate word embeddings for OOV words by averaging ngram vectors.

fastText has also capability of text classification besides learning word embeddings.
It is created by Facebook’s Al Research (FAIR) lab. Algorithm’s details are ex-
plained in studies [11, 12]. Main benefit of fastText is it can generate vectors for
OOV words. It uses bag of ngrams to maintain efficiency without losing accu-
racy. It is very inefficient to store all ngrams with their vectors, so it uses hashing
trick in order to maintain fast and memory efficient mapping of ngrams. There
is a hyper parameter of fastText "bucket” which determines the number of avail-
able unique hashes. fastText first learns a vector for an ngram, then hashes the
ngram (hash will be a value between 0 and [bucket-1]), then maps the vector to the
ngramuvectorshash]. By this method, there can be collisions with ngrams resulting

10

same hash values, it is actually not a bad thing, it may add some randomness to
fastText which can be considered as a good thing in NLP field. For words present
in corpus, fastText has exactly the same processes with Word2Vec algorithm.

We are planning to use pretrained fastText models by way of Gensim library in
order to obtain our word embeddings.

Edit Distance

Edit distance is the algorithm that will help us achieve typo detection task. Edit
distance is the minimum number of operations, such as deletion, substitution and
insertion, required for converting one text to another text. Also it is a famous
dynamic programming algorithm. Consider two words "yatak” and “battik”. Edit
distance between these two words is calculated as follows:

1. yatak to yatak, substitution of a with 1.
2. yatik to batik, substitution of y with b.
3. batik to battik, insertion of t.

We can conclude that words yatak and battik has edit distance of 3 between them.

Encoder-Decoder Models

Encoder-decoder model is a type of sequence-to-sequence RNNs. It has sequence
input and sequence output. Encoder-decoder architectures are mostly used in ma-
chine translation and speech recognition tasks. An encoder-decoder model can be
divided into three parts, mostly designed as LSTM (Long Short Term Memory) cells,
which are Encoder network, decoder network, and a state vector between them. En-
coder network is responsible for extracting meaningful information from given input
sequence and forwarding this extracted information to decoder network by way of
state vector. Decoder network is responsible for unpacking information stored in
state vector and generating sequence outputs.

Ilya Sutskever et. al. [13] showed efficiency of this architecture on machine transla-
tion task. The grammar and spell correction task might be considered as a machine
translation problem, as Goker [1] did in his work, since input is an ill-formed text;
output is a corrected form of given input text. An example of encoder decoder
network shown in Figure 7.

<EQ5=>

> -]

—

_bé
=s— |—>x
x —» <

A B C <EOQS>

Figure 7: Sequence-to-sequence model for machine translation. [13]

11

We are planning to use this architecture while implementing our main deep
learning architecture for grammar and spell checking purposes.

3.3 Comparison Metrics

Since the proposed the model falls into semi-supervised classification paradigm, stan-
dard metrics for classification can be used as success metrics. Primary metric for
classification is accuracy. Accuracy will also be an efficient metric in order to com-
pare our method with previously mentioned baseline algorithms since all of them
used accuracy scores to show the success of proposed methods. In general, confusion
matrix is generated at first after a classification task which is shown in Figure 8.

Actual Values

Positive (1) Negative (0)

Positive (1) TP FP

Negative (0) FN TN

Predicted Values

Figure 8: Confusion matrix.

e TP(True Positive): The number of samples that are actually positive and
correctly classified as positive. In our case, this will be the number of correctly
fixed misspelled inputs.

e FP(False Positive): The number of samples that are actually negative and
classified as positive. In our case, this will be the number of corrected inputs
which should not be corrected.

e FIN(False Negative): The number of samples that are actually positive and
classified as negative. In our case, this will be the number of inputs that are
not corrected which should be corrected.

e TN(True Negative): The number of samples that are actually negative and
classified correctly as negative. In our case, this will be the number of inputs
that are not corrected which should not be corrected.

Accuracy score is calculated as shown in Equation 1. Since accuracy score is not sen-
sitive to imbalanced datasets, we may need to use metrics which are more sensitive
for imbalanced datasets. These metrics are precision, recall and F1 scores.

TP+TN
TP+ FP+FN+TN

(1)

Accuracy =

12

Precision score gives information about how many of positive predictions are actually
true. Its formula is given in Equation 2.

TP
Precision = ————— 2
recision = o5 p (2)
Recall score gives information about how many of actual positives predicted cor-

rectly. Its formula is given in Equation 3.

TP
Recall = ———— 3
T TPLFN)
F1 score is a metric as a weighted average of recall and precision scores. By way of
weighted averaging, precision and recall scores become more meaningful. Its formula
is given in Equation 4.
2 - Precision - Recall

F18 = 4
core Precision + Recall (4)

Since we are going to implement a encoder-decoder architecture, there is a metric
proposed by Papineni et. al. [8] called BLEU Score which is used for automatic eval-
uation of machine translation task. This metric might be useful for us to evaluate
our encoder-decoder model.

Our project phases contain implementation of rule-based algorithms. We are plan-
ning to implement unit tests for each sub-components of rule-based algorithms. If
these sub-components passes designed unit tests, they will be assumed as successful.

This project is considered as successful if these objectives are successfully completed:

e Since each phase of this project is a method of text normalization, completion
of any phase will indicate that this project is successful.

e At least 70% accuracy obtained by a balanced (FEvenly distributed classes e.qg.
50% positive class, 50% negative class.) testing data set will indicate that this
project is successful.

e If a balanced testing dataset cannot be obtained, at least 70% of F1-score will
indicate that this project is successful.

3.4 Data Sets

All data that will be used in this project will be in text format. As mentioned before,
we have collected noisy and clean data. Big portion of noisy data (tweets) are stored
as structured Solr documents. Solr is an effective search engine application. Some
of the tweets are stored only in text format without any other features, others are
stored as text data, but the parts we are not interested in of tweets are annotated
e.g. links, mentions, hashtags, emoticons, so we can easily remove these redundant
parts from tweets easily. Noisy data that we do not store in Solr are stored in pure
text format in text files. Clean data that we have obtained are stored in text files

13

with pure text format.

Our approach (encoder-decoder model) requires huge amount of noisy-canonical text
sequence pairs to train and it is hard to obtain labeled data set for our purposes,
especially in Turkish. We are planning to use baseline algorithms (See Section 2) to
create partially or fully corrected forms of noisy data (tweets) to extend our train-
ing data set (noisy-canonical pairs). Another approach to extend training data set
is to automatically generate noisy forms of clean data that we have obtained from
Turkish news. We will generate noisy forms of these clean data by synthetic data
generation algorithm that we will improve. Basically there will be 4 operations to
generate noisy forms which are insertion of a new character, deletion of an existing
character, transposition of two existing characters and substitution of an existing
character in the text.

4 System Architecture

At first, raw input is given to the system. System applies punctuation restoration
which helps segmenting text into sentences. As we stated in section 5.3, it is as-
sumed that at least 80% of words in a sentence are Turkish. Language detection
is applied in order to check 80% limit. If this limit is not satisfied, input will be
discarded. If given limit is satisfied, sentence is tokenized and for each token, system
checks that given token is abnormal or not using a morphological analyzer and a
dictionary. If given token is not abnormal, given token will not be changed. If given
token is abnormal, typo detection will be applied using edit distance and passed to
the language model. If language model gives a probability higher than a threshold,
which will be determined by testing different values, it outputs the canonical form
of given abnormal token. If the input of language model coming from typo detection
phase is not correct and language model cannot correct this token, raw input will
be passed directly to sequence-to-sequence model. Same raw input will be provided
to edit distance based algorithm. Sequence-to-sequence model will combined with
edit distance based algorithm in order to generate the corrected form of given token.

High level flow chart of this project shown in Figure 9.

14

Raw Input

:
-

|
For each sentence

-—Discard if at least 80% of words are not Turkish.-»’ll‘
- accepts»-
For each token

v
!

Until n rejections—/

L

After n rejections

<

Figure 9: Flowchart of the system.

5 Experimental Study

5.1 Experimental Setup

We will start our experiments after the implementation of encoder-decoder model.
We will train encoder-decoder model with clean and noisy data described in Section
3.4. It is assumed that data set that we have collected is enough for encoder-decoder
model to be trained successfully. In training phase, it is assumed that we will have
enough computational power. We will use NVIDIA RTX2080 Ti graphic card to
have reasonable training time.

15

For testing the model, we will collect a couple hundreds of noisy tweets and an-
notate them manually. This data set will be used for comparison of our model
with other existing studies. Result will be compared according to their accuracy/F1
score since this problem is considered as binary classification problem in baseline
algorithms.

6 Tasks Accomplished

6.1 Current state of the project

— Clean data collected from news.
— Noisy data collected from twitter.

— Simple version of synthetic data generation is implemented.
It selects random words from given sentences and randomly applies random
operations to random characters. This method will be improved to catch
common error patterns.

— Language detector for Turkish is implemented.

— Solr client is implemented with Java.
Client is removing the unnecessary parts of the data and returns only mean-
ingful text.

6.2 Task Log
Metting#1

Date: 06.06.2019

Location: Marmara University

Period: 2 Hours

Attendees: All group members

Objectives: Simple research about the algorithms that will be used in the project
Decisions and Notes: Our project scope has been decided

Metting#2

Date: 03.10.2019

Location: Marmara University

Period: 2 Hours

Attendees: All group members

Objectives: Presenting related works

Decisions and Notes: Methodology and baseline algorithms are determined

16

Metting#3

Date: 10.10.2019

Location: Marmara University

Period: 1 Hours

Attendees: Mert Kelkit

Objectives: -

Decisions and Notes: Presentation of related works has been done

Metting#4

Date: 10.10.2019

Location: Marmara University

Period: 1 Hours

Attendees: All group members

Objectives: We will start to collect data

Decisions and Notes: Methods for data collection is determined

Metting#5

Date: 17.10.2019

Location: Marmara University

Period: 1 Hours

Attendees: All group members

Objectives: Improvements will be done on PSD document

Decisions and Notes: We talked about draft version of the PSD document

Metting#6

Date: 10.10.2019

Location: Marmara University

Period: 1 Hours

Attendees: All group members

Objectives: Small mistakes will be corrected before submitting the final version
Decisions and Notes: Final version of PSD document is examined

Additional meetings has been done on Tuesdays when needed, to talk about the
current state of the project and the future work.

17

6.3

Task Plan with Milestones

Tasks are listed below with their descriptions.

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8

Literature survey for related works.
Investigation of methodologies developed so far for Turkish text normalization,
grammar and spell checking.

Improvement of rule based algorithm for generation of synthetic examples.
A process that generates noisy words from canonical words by way of common
error patterns.

Implementation of [1, 2, 3] that will be used as baselines for comparison.

Typo detection via syllable analysis and edit distance.
Detection of non-intentional misspellings.

Sequence2sequence model for punctuation restoration.
Detection and correction of misplaced or missing punctuations.

Development of semi-supervised sequence2sequence model on synthetic data
(labelled) and real twitter examples (mostly unlabelled /some labeled via rule
based algorithms).

Implementation of encoder-decoder architecture proposed in this project.

Combining the sequence2sequence model with edit-distance/most-common sub-
sequence based algorithm.

Combining this project’s encoder decoder architecture with edit distance and
longest common subsequence metrics.

Implementation of web application for end users. Publishing final model as
REST API and implementing a web application that uses API for end users.

Second semester Gantt chart is shown in Figure 10.

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8

A
Today

150 days 4 Jan - 1Jun
38 days 20 Dec - 26 Jan
22 days 26 Jan - 16 Feb
19 days 31Jan - 18 Feb
30 days 20 Jan - 18 Feb
105 days 1 Feb - 15 May
30 days 1 May - 30 May

31 days 1 May - 31 May

Figure 10: GANTT Chart for second semester tasks.

18

Our milestones are listed below:
1. Getting results of baselines after completion of Task 3.

2. Advanced sentence segmentation that will provide sentence level normalization
after completion of Task 5.

3. Developing our deep learning method after completion of Task 6.

19

References

[1]

[5]

[6]

[10]

[11]

[12]

[13]

S. Goker and B. Can, “Neural text normalization for turkish social media,”

in 2018 3rd International Conference on Computer Science and Engineering
(UBMK), pp. 161-166, IEEE, 2018.

D. Torunoglu and G. Eryigit, “A cascaded approach for social media text nor-
malization of turkish,” in Proceedings of the 5th Workshop on Language Anal-
ysis for Social Media (LASM)@ EACL, pp. 62-70, Citeseer, 2014.

N. Boliicti and B. Can, “Context based automatic spelling correction for turk-
ish,” in 2019 Scientific Meeting on Electrical-Electronics Biomedical Engineer-
ing and Computer Science (EBBT), pp. 1-4, April 2019.

H. Sak, T. Giingor, and M. Saraglar, “Turkish language resources: Morpho-
logical parser, morphological disambiguator and web corpus,” in International
Conference on Natural Language Processing, pp. 417-427, Springer, 2008.

A. A. Akin and M. D. Akin, “Zemberek, an open source nlp framework for
turkic languages,” Structure, vol. 10, pp. 1-5, 2007.

A. Solak and K. Oflazer, “Design and implementation of a spelling checker for
turkish,” 1993.

“Kemik - our datasets.” http://www.kemik.yildiz.edu.tr/?id=28. (Ac-
cessed on 11/01/2019).

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for au-
tomatic evaluation of machine translation,” in Proceedings of the 40th annual
meeting on association for computational linguistics, pp. 311-318, Association
for Computational Linguistics, 2002.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances
in neural information processing systems, pp. 3111-3119, 2013.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors
with subword information,” Transactions of the Association for Computational
Linguistics, vol. 5, pp. 135-146, 2017.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient
text classification,” arXiv preprint arXiv:1607.01759, 2016.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neu-
ral networks,” in Advances in neural information processing systems, pp. 3104—
3112, 2014.

20

