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1. Introduction  

Reinforcement learning (RL) is a machine learning technique where an agent takes an action in 

an environment, moves to the next state and receives rewards or punishments regarding this 

new state. So, it can learn a satisfactory (hopefully optimal or possibly a near optimal) policy 

that leads the agent to the goal state in the environment. 

As the environment grows too large, converging to a satisfactory policy for regular RL 

algorithms such as flat Q–learning becomes quickly infeasible. So, splitting up the environment 

(hence the huge state space) into regions called subenvironments based upon the structure of 

the environment and composing the policy (or policies) of a sequence (or several sequences) of 

components each learned in one of these regions is an effective solution to RL large state spaces. 

Learning each component called an option/skill/macro-action and learning the main policy (i.e., 

composing the main policy as one or more sequences) of these skills occur in two different 

levels or hierarchies of learning. Hence, this process of splitting the environment into 

subenvironments divides, in fact, learning into hierarchies. In each subenvironment, one or 

more subtasks are defined depending upon the subgoals selected and each of these subtasks are 

considered as an individual RL problem to solve in the first hierarchy. Then in the following 

hierarchy, the skills learned in the former hierarchy are used as the building stones to compose 

the main policy. This technique is called Hierarchical Reinforcement Learning (HRL) [1]. In 

HRL, there are actions as well as skills. A skill representing a specific subpolicy is learned to 

solve a certain subtask by reaching a subgoal from some initial state within a certain region.  

As described above, to construct a skill, the subgoals should be detected. However, the agent 

does not know the environment completely since it learns the environment episode by episode 

[2]. Thus, the subgoals may change since the partial graph evolves over time. So, the subgoal 

changes should be detected again. Subregions can be related as community structures. Further 

information about this relation will be given in section 1.1.  

The focus of the work is on how to improve the time complexity of the detection of subgoals 

using dynamic community detection algorithms and skill construction. There are works which 

use dynamic community detection algorithms based on modularity, however there is no work 

that uses a community detection algorithm based on permanence in RL domain. In our work, 

permanence and modularity will be used, and it will be our novelty. 
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1.1 Problem Description and Motivation  

 In case an environment is represented by a large state space, it is usually a good idea to divide 

the state space into subregions depending on the topology of the environment. 

A memory based agent in RL progressively constructs a partial model of the environment it is 

in an interaction with in a dynamic fashion where the partial model grows more similar to the 

actual environment as learning proceeds. Thus, subgoals are also detected in a dynamic manner 

[1]. 

In RL, environments may be effectively modeled using graphs [2, 11]. The connection points 

of subregions can be good candidates to be subgoals by their nature. Hence, subgoals can be 

considered as bottlenecks of a graph, and they can be isolated from other nodes using a graph 

property, betweenness centrality (BC) [2]. BC values of nodes in a graph are shown in Fig. 1. 

It defines the bottlenecks very well; however, calculation of BC values is O(n3) since subgoals 

might change one episode to another, BC values are calculated from scratch per episode. A 

possible improvement in computation speed would follow if BC values are computed at longer 

intervals than each episode; however, this would potentially delay the detection of subgoals 

while the time complexity of the process would not asymptotically change. The problem of 

using BC values is that its calculation brings a computational overhead.  

 

Fig. 1 - An example for subgoal representation. The graph is colored by betweenness   
       centrality values. The red ones have high values since they are subgoals. 
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Although this problem as explained appears to be a problem within RL domain (improving the 

time complexity in HRL paradigm) this problem manifests much similarity to a problem within 

the context of graph theory: detection of communities based on graph properties.  

Communities, a common practice in graph theory, can be considered as a candidate to model 

these subregions; where a community is defined as a group of nodes which in a set exhibit a 

relatively higher similarity [9]. There are community detection algorithms which run on static 

graphs [4, 5] and dynamic graphs [6, 7]. 

The advantage of using communities is that they can be detected dynamically. When a partial 

graph is updated, there is no need to detect all communities from scratch. In dynamic 

community detection algorithms, the communities that are affected only from the addition of 

new nodes or edges are disbanded. Then, the detection algorithms run locally for new nodes 

and nodes of disbanded communities. The rest of the communities do not change. Hence, all 

communities are not detected over and over for each episode, only related communities are 

detected.  

The dynamic community detection is a convenient solution for detecting subgoals both from 

the aspects of accuracy and time complexity.  

 

1.2 Scope of the Project 

Our project is based on discrete and deterministic environments. The implementation of the 

entire HRL algorithm is not in the scope of our project. We will devise a decision logic as a 

part of the HRL algorithm whether to run the skill construction algorithm observing subgoal 

states via an analysis of the partial transition graph.  

We will embed this decision logic to the HRL algorithm implemented in [12]. The partial 

transition graph obtained as the output from [12] is used as an input in our module. The decision 

of whether to construct skills will be the output from our module and it will be the input for the 

next part of the HRL. These processes will continue in an iterative manner. 

A discrete environment is assumed, and the state space is limited to reasonably complex 

environments, where reasonable indicates a size within the processing capabilities of the 

computer. For example, on a computer that has Intel® Core™ i7-8565U CPU @ 1.80GHz 1.99 

GHz and 8GB RAM cannot handle solving a grid environment that has one million states in a 

reasonable time. Our approach works in only two hierarchies, for actions and skills. However, 
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HRL algorithm can be run in both stationary and non-stationary environments, the stationary 

environments are considered for our project. 

 

Definitions, Acronyms, and Abbreviations 

RL:  Reinforcement Learning 

HRL:  Hierarchical Reinforcement Learning 

BC:  Betweenness Centrality 

NMI:  Normalized Mutual Information 

ARI:  Adjusted Rand Index 

SCC:  Strongly Connected Component 

DFS:  Depth First Search 

GSL:  Graph based Skill Learning 

STL:  Skill based Transfer Learning 

ICD:  Incremental Community Detection Algorithm 

DCD:  Dynamic Community Detection 

Lattice graph:  It might be considered as a finite part of a regular graph where each vertex 

has the same number of neighbors. 

Modularity:  A metric that represents how strongly are nodes connected to each other 

in each community. 

Permanence: A vertex-based metric, considers the strength of membership of a vertex 

to a community [14].  

DynaMo:  Dynamic modularity-based community detection algorithm 

MaxPerm:  A community detection algorithm based on maximizing permanence, 

static algorithm 

DyPerm:  Dynamic Community Detection by maximizing permanence, dynamic 

version of MaxPerm algorithm 
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2. Related Work  

There are a lot of works [2,3,9,10,11,15,16,17] for finding subgoal states and construction skills 

dynamically or statically. The ones based on graph properties are very similar to our work and 

will be discussed in this section. 

 

2.1 A graph-theoretic approach toward autonomous skill acquisition in reinforcement 

learning 

In this article, authors use a graph-theoretic approach to find subgoals and then to construct 

skills. The authors state that the visiting frequency of and the probability of transition to the 

subgoal states are lower than other states. Given this fact, their algorithm is based on frequency-

based and graph-partitioning methods. Their RL algorithm builds a transition graph and updates 

it in every e episodes, with e a parameter of their method. There is also another parameter tt, 

which is the minimum required probability for an edge to stay in the transition graph. Then the 

transition graph is divided into some huge clusters called strongly connected components 

(SCCs) using a linear time algorithm based on depth first search (DFS). Then the states 

connecting each two SCCs, namely subgoal states, are found considering border states of SCCs 

as potential candidates of subgoal states. [9] 

 

2.2 Graph based skill acquisition and transfer learning for continuous reinforcement 

learning domains 

In this article, authors mentioned two main problems of RL methods, curse of dimensionality 

and excess required learning time, and they proposed two novel approaches, which are Graph 

based Skill Learning (GSL) and Skill based Transfer Learning (STL). GSL method discovers 

skills adaptively. HRL is an efficient method since they worked on continuous state space. They 

detect communities from connectivity graph to make state space discrete. Connectivity graph 

contains both agent’s behavior and environment’s dynamics. The efficiency of this method 

depends on both the structure of connectivity graph and qualification of community detection 

algorithm. They achieved best performance with combination of the transition graph and the 

distance graph with power-law distribution as the connectivity graph, and Louvain as the 

community detection algorithm. STL method transfers skills to target task. [10]  
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2.3 Constructing Temporally Extended Actions through Incremental Community 

Detection 

In this article, authors use graph-based approach to divide the undirected and unweighted state 

transition graph into communities where nodes in each community exhibit relatively higher 

similarity. Communities of the transition graph are detected considering a graph property called 

modularity [9]. Modularity is a metric that represents how strongly are nodes connected to each 

other in each community. Since modularity maximization is an NP-hard problem, the authors 

employ a heuristic modularity maximization method, the Louvain algorithm [5]. If the graph 

has m edges in total, the Louvain algorithm runs in O(m). The Louvain algorithm obtains a base 

partition, then latter partitions are updated depending upon this base partition in the incremental 

community detection algorithm (ICDA). ICDA is rule-based and updates the communities 

(partitions) dynamically. Each community is characterized as a macro-state (aka. aggregated), 

and skills are constructed between each of these macro-states. [11] 

 

3. System Design   

3.1 System Model 

Subgoal changes should be detected as the agent learns the environment. A module will be 

implemented that determines whether the subgoal states are changed or not. The RL module, 

dynamic community detection (D.C.D) module and skill planner can be expressed as a client-

server connection. The communication between our modules can be seen in Fig. 2. 

     

Fig. 2 - Communication between RL module, D.C.D module and Skill Planner 
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While the agent learns the environment, it sends partial graphs of the environment based on its 

experience to D.C.D module. D.C.D module will compare the new and the previous partial 

graphs and determine new communities. Skill planner makes a decision comparing previous 

and current communities and this decision is forwarded to RL module. This decision may be: 

• If there are subgoal changes, construct skills  

• If there are not subgoal changes, continue with existing skills.  

This process continues until the agent learns the hopefully optimal or near optimal path. 

 

3.2 Flowchart and/or Pseudo Code of Proposed Algorithms  

As described above, RL module, D.C.D module and skill planner are in communication. If skill 

planner makes a decision of construct skills, skill construction algorithm works in RL module. 

If skill planner makes a decision of continue with existing skills, RL module uses the existing 

skills. This flowchart can be seen in the Fig. 3. 

     

Fig. 3 - Flowchart of Communication of Modules 

In our D.C.D module, we plan to use DyPerm [14] which is a dynamic community detection 

algorithm based on permanence or DynaMo [7] which is also a dynamic community detection 

algorithm based on modularity or a combination of DyPerm and DynaMo algorithms. Pseudo 

code of DyPerm can be seen in Algorithm 1, and DynaMo in Algorithm 2. 
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Algorithm 1 - Pseudo code of DyPerm algorithm 
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Algorithm 2 - Pseudo code of DynaMo algorithm 
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Our modified HRL algorithm [12] can be seen in Algorithm 3.  

 

Algorithm 3 - Pseudo Code of Modified HRL algorithm 

 

Proposed algorithm of Skill Planner in Algorithm 4. 

 

Algorithm 4 - Pseudo Code of Skill Planner 
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3.3 Comparison Metrics  

The learning performance of HRL algorithm is measured using a diversity of the following 

metrics: 

• The objective of the agent is to reach the goal state using a hopefully optimal policy 

(i.e., taking a minimum number of actions). It expresses how rapid the learning occurs 

as well as revealing convergence and divergence of the learning process. Improving the 

skill construction planner mechanism is a contribution where skills are constructed only 

as required. Discovering skills as early as possible has a remarkable effect on learning 

time. This yields the agent to choose to execute skills, instead of primitive actions, so 

number of steps to reach a subgoal would be minimized. Also, the total number of 

episodes learning is achieved within is another comparison metric.  

• Another metric to measure the learning performance of HRL is the expected total reward 

the agent receives after each episode. If the skill construction mechanism builds skills 

in advance, this increases the expected total reward in each episode. 

The metrics to measure the accuracy of detected subgoals are given below: 

• Number of true positives, true negatives, false positives and false negatives to calculate 

precision, recall and F1 score metrics. These measurement metrics are given in Table 1 

and Table 2. 

 

 Actual 

Subgoal Change Present Subgoal Change Absent 

P
re

d
ic

te
d

 

Subgoal Change 

Detected 
True Positive (TP) False Positive (FP) 

Subgoal Change 

not Detected 
False Negative (FN) True Negative (TN) 

Table 1 - Subgoal Change Detection Results 
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Measurement 

metric 
Definition Ideal Value 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 1 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 1 

F1 Score 
2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 1 

Table 2 - Definitions of Measurement Metrics 

 

The accuracy of detected communities from our D.C.D module will be compared with the 

ground-truth community structures using NMI and ARI measurement metrics. 

 

3.4 Data Sets or Benchmarks 

Two-dimensional lattice graphs are good representatives of the grid world environments. There 

is a formula of lower bound for modularity of lattices according to given parameters. We 

implemented a synthetic graph generator to obtain different two-dimensional lattice graphs, 

since we consider only grid worlds. Then the obtained graphs are converted to RL 

environments. The agent will try to learn that environments.  

HRL will be run in a benchmark problem, four-room grid world, since it is used for expressing 

the performance of skill construction approach [11]. 

 

4. System Architecture  

We have three modules: 1. RL module where learning of the agent takes place in; 2. D.C.D 

module for detecting communities locally and dynamically; 3. Skill Planner which compares 

previous and current communities, makes inferences and shares these inferences with RL task.  
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Data flow of RL module is given in Fig. 4. 

                        

Fig. 4 - Data Flow of RL Module 
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Control flow of D.C.D module is given in Fig. 5. 

                    

Fig. 5 - Control Flow of D.C.D module 

 

Control flow of Skill Planner is given in Fig. 6. 

 

Fig. 6 - Control Flow of Skill Planner 

 

 

 

 



   
 

15 
 

5. Experimental Study  

In order to analyze how community detection algorithms, behave on lattice graphs, two 

experiments are made using static algorithms in section 5.1 and 5.2.  

 

5.1 Community Detection with modularity, Louvain algorithm [4] 

Experimental Setup: Louvain algorithm which maximizes modularity was run on some 

two-dimensional lattice graphs in order to examine how it forms the communities.   

 

Experimental Results: A lattice graph that has at most 9x9 nodes in each subregion and 

3x3 subregion in Figure 7. The detected communities with Louvain algorithm are in 

Figure 8. 

            

       Fig. 7 - Lattice graph               Fig. 8 - Lattice graph with detected communities 

  

Discussions: Lattice graph is created considering the environment has 9 subregions. We 

expect the community detection algorithm to find these 9 subregions as forming 9 

communities. The Louvain algorithm detected each subregion as a community as we 

expected.  

 

5.2 Community Detection with permanence, MaxPerm algorithm [13] 

Experimental Setup: MaxPerm algorithm was run on some two-dimensional lattice 

graphs in order to examine how it forms the communities.  
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Experimental Results: A lattice graph that has at most 9x9 nodes in each subregion and 

3x3 subregion in Fig. 8. The detected communities with Permanence algorithm are in 

Fig. 9. 

                                      

  Fig. 9 - Lattice graph with detected communities 

Discussions: The environment is considered to have 9 subregions. We expect the 

community detection algorithm to find these 9 subregions as forming 9 communities. 

But MaxPerm algorithm found 2 or 3 communities in each subregion, detected different 

communities from the Louvain algorithm. The result was not as we expected. 

 

5.3 HRL experiment 

Experimental Setup: Skill planner will be implemented. HRL will be tested on the 

different size of environments using modules of our project. The results will be 

evaluated based on our comparison metrics that are explained in section 3.3. 

 

6. Tasks Accomplished  

6.1 Current State of the Project 

In current state of the project, these tasks were accomplished: 

• Deprecated functionalities of HRL implementation were rewritten in Python. 

• The problem in the DynaMo code was solved by contacting its author. 

• Synthetic graph generator is implemented in Python. We obtain different graphs giving 

maximum number of nodes for rows and columns of subregions and number of 

subregions as parameters to the synthetic graph generator. 
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• The static version of the permanence MaxPerm code was obtained from its author, since 

it is not available on the internet. MaxPerm algorithm is tested on some of the graphs 

that are generated from the synthetic graph generator to understand how it works.  

• There is an ongoing work on modifying the dynamic version of the permanence, 

DyPerm code. 

 

6.2 Task Log 

Our meetings are held in our advisor’s office and lasted for 1.5-2 hours. Kutalmış Coşkun who 

is the author of [12] also attends occasionally our meetings.  

Meeting 1 - 3.10.2019: In our first meeting, we talked about our project and decided to make 

more detailed literature survey about both community detection algorithms and subgoal 

detection algorithms in HRL. 

Meeting 2 - 10.10.2019: We focused on researching and understanding the community 

detection algorithms [6, 7] over the past week. We shared the articles we found with our advisor 

and Kutalmış Coşkun. 

Meeting 3 - 17.10.2019: We focused on researching and understanding the subgoal detection 

algorithms over the past week. We found an article that is very close to our approach which 

detects subgoals using a community detection algorithm based on modularity [11]. We thought 

we were going to come up with a novel solution, but this approach is thought and published 

already. We talked about how we can add a novelty to our project. After the discussion, we 

decided to search different graph properties in order to strengthen the detection of subgoals. 

Meeting 4 - 24.10.2019: We found an article that proposes a new graph property to find 

communities more accurate but could not be able to make detailed study on the article [13]. We 

shared this article with our advisor, and he asked us to understand the article better. We found 

an article about relation between modularity and lattices since we wanted to generate lattices in 

a systematic manner. In the article, there is a formula of lower bound for modularity of lattices 

according to given parameters. We tried to determine parameters for our lattice structure. 

Meeting 5 - 31.10.2019: We showed our PSD to our advisor and he shared his opinions and 

gave advices to us. 
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Meeting 6 - 7.11.2019: We completed synthetic graph generator and showed this module to our 

advisor. 

Meeting 7 - 21.11.2019: The article that proposes a new graph property, permanence, was 

analyzed. This graph property is used to detect community structures. The proposed MaxPerm 

and DyPerm algorithms were discussed. It was decided to ask for the code of MaxPerm from 

its author, since it is not available on the internet [13]. 

Meeting 8 - 28.11.2019: The code of DyPerm is publicly available. While we were waiting the 

code of MaxPerm, we tried to run the DyPerm code and made some observations. But the code 

did not work. There was a missing file to run the code. We could not figure out what kind of 

information the file contained, and documentation was not well enough. We shared our 

experiences with our advisor. We decided to modify the code in accordance of our problem. 

Meeting 9 - 12.12.2019: The code of MaxPerm was obtained. We run the code on our graphs. 

The results were not as we expected. Thus, we decided to work more on the permanence. 

Meeting 10 - 26.12.2019: We showed our graduation project presentation to our advisor. We 

got some feedbacks from our advisor. 

 

6.3 Task Plan with Milestones 

• Generate/modify decision logic 

Using RL task and D.C.D modules, a decision logic is derived. 

• Implement a decision module for skill acquisition 

A module will be implemented using the derived decision logic. 

 

• Test the algorithm with different inputs 

The system will be tested with different inputs. If results are not satisfactory, the 

decision logic will be modified. 

These tasks will be proceeded in an iterative manner. The Gannt chart for the project time line 

is given in Figure 10. 
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Figure 10 - Gannt Chart for Project Time Line 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

2

1

Gannt Chart for Project Time Line

Duration

1.Generate/modify 
decision logic 

2.Implement a decision   
module for skill acquisi
tion 

3.Test the algorithm 
with different inputs 

 

 

 

February March May January April 



   
 

20 
 

7. References 

[1] Sutton, Richard S., Doina Precup, and Satinder Singh. "Between MDPs and semi-MDPs: A 

framework for temporal abstraction in reinforcement learning." Artificial intelligence 112.1-2 

(1999): 181-211. 

[2] Şimşek, Özgür, and Andrew G. Barto. "Skill characterization based on betweenness." 

Advances in neural information processing systems. 2009. 

[3] Davoodabadi, Marzieh, and Hamid Beigy. "A new method for discovering subgoals and 

constructing options in reinforcement learning." IICAI. 2011. 

[4] BLONDEL, Vincent D., et al. Fast unfolding of communities in large networks. Journal of 

statistical mechanics: theory and experiment, 2008, 2008.10: P10008. 

[5] TRAAG, Vincent A.; WALTMAN, Ludo; VAN ECK, Nees Jan. From Louvain to Leiden: 

guaranteeing well-connected communities. Scientific reports, 2019, 9. 

[6] CORDEIRO, Mário; SARMENTO, Rui Portocarrero; GAMA, João. Dynamic community 

detection in evolving networks using locality modularity optimization. Social Network Analysis 

and Mining, 2016, 6.1: 15. 

[7] ZHUANG, Di; CHANG, J. Morris; LI, Mingchen. DynaMo: Dynamic Modularity-based 

Community Detection in Evolving Social Networks. arXiv preprint arXiv:1709.08350, 2017. 

[8] NEWMAN, Mark EJ; GIRVAN, Michelle. Finding and evaluating community structure in 

networks. Physical review E, 2004, 69.2: 026113. 

[9] KAZEMITABAR, Seed Jalal; TAGHIZADEH, Nasrin; BEIGY, Hamid. A graph-theoretic 

approach toward autonomous skill acquisition in reinforcement learning. Evolving Systems, 

2018, 9.3: 227-244. 

[10] SHOELEH, Farzaneh; ASADPOUR, Masoud. Graph based skill acquisition and transfer 

learning for continuous reinforcement learning domains. Pattern Recognition Letters, 2017, 87: 

104-116. 

[11] XU, Xiao; YANG, Mei; LI, Ge. Constructing Temporally Extended Actions through 

Incremental Community Detection. Computational intelligence and neuroscience, 2018, 2018. 

[12] Coşkun, Kutalmış, Aslancı, Ezdin, 2017, Using Hierarchies in Reinforcement Learning 

Framework with Non-Stationary Environments. B.S. thesis. Marmara University.  



   
 

21 
 

[13] CHAKRABORTY, Tanmoy, et al. On the permanence of vertices in network communities. 

In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery 

and data mining. ACM, 2014. p. 1396-1405. 

[14] AGARWAL, Prerna, et al. DyPerm: Maximizing permanence for dynamic community 

detection. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 

Cham, 2018. p. 437-449. 

[15] MENDONCA, Matheus RF; ZIVIANI, Artur; BARRETO, AndrÉ. Graph-Based Skill 

Acquisition For Reinforcement Learning. ACM Computing Surveys (CSUR), 2019, 52.1: 6. 

[16] DING, X. I. A. O.; LI, Yi-tong; CHUAN, S. H. I. Autonomic discovery of subgoals in 

hierarchical reinforcement learning. The Journal of China Universities of Posts and 

Telecommunications, 2014, 21.5: 94-104. 

[17] MACHADO, Marios C.; BELLEMARE, Marc G.; BOWLING, Michael. A laplacian 

framework for option discovery in reinforcement learning. In: Proceedings of the 34th 

International Conference on Machine Learning-Volume 70. JMLR. org, 2017. p. 2295-2304. 

 

 

 


