
CSE4097 - Engineering Project I
Analysis and Design Document

USING HIERARCHIES IN REINFORCEMENT
LEARNING FRAMEWORK WITH

NON-STATIONARY ENVIRONMENTS

Group Members
Ezdin ASLANCI 150112022

Ahmet Kutalmış COŞKUN 150113018

Project Advisor
Assoc. Professor M. Borahan TÜMER

 1. Introduction

Reinforcement Learning (RL) is a behavioral learning approach to solve sequential decision
making problems, in which the environment is generally assumed to be stationary. This
assumption on stationarity is often considered to be optimistic for the reason that it holds
for a limited amount of real world problems. In dynamic (non-stationary) environments,
using RL is usually nontrivial since the agent is forced to re-learn the policy from scratch –
and forgets the old policy – after changes. Making the agent able to detect and respond to
the changes so as to learn and adapt to the current behavior of environment improves the
learning performance [4]. In this work, we plan to improve the change detection
mechanism of Hierarchical Reinforcement Learning with Context Detection (HRL-CD) by
tracking the convergence tendency of First Order Markov (FOM) dependencies of action
sequences.

 1.1 Problem Description and Motivation

Reinforcement Learning (RL) is a learning method inspired from behaviorist
psychology. An RL agent interacts with the environment that surrounds it, by taking
actions which are defined in its current state . The environment responds to the action
of agent by returning a reward signal and passing to a new state. Throughout this
process, the aim of the agent is to reach a goal state by learning the optimal sequence
of actions which maximizes the cumulative reward it obtains from the environment.

A model-free, off-policy TD control algorithm, Q-Learning, estimates the Q values by
taking actions and using related rewards for each step. In each step, Q value of a single
state-action pair is updated by an update equation. In an improved model-based
algorithm known as Prioritized Sweeping (PS), multiple eligible state-action pairs are
updated with the same equation [3]. Both of these approaches become infeasible when
the state space is large or continuous. In these kinds of problems, using hierarchies has
advantages and makes RL feasible. Hierarchical Reinforcement Learning (HRL)
approach divides the problem into solvable independent tasks instead of trying to
solve the whole problem as a single task. An agent with HRL approach can combine the
solutions of individual tasks to reach its goal [2,3].

2 / 13

Figure 1: Interaction between agent and
environment

 1.2 Scope of the Project

Our research is focused on deterministic, discrete and dynamic environments with
different dynamics that occur infrequently and independently from the agent. We plan
to adopt grid world problem and run our simulations of Reinforcement Learning on
such environments. In a grid world problem, an RL agent learns how to reach to a goal
state from its start state by taking right, left, up and down actions on the grid.
Dynamism will be provided by the changing the grid randomly at the training process
of the agent. We expect the agent to realize and develop some strategies such as
relearning or using its previous experiences, when some changes appear on the grid.
The changes on the environment (grid) will be detected by observing the sequence of
actions which is executed by the agent.

Our another study which is on the improvement process, is “Detection of Regime
Switching Points in Non-Stationary Sequences using Stochastic Learning based Weak
Estimation Method (SCD)”. Our main objective is to combine these two studies which
means; changes on environment will be detected by our SCD method. We expect to
detect very slight changes by using SCD method.

Simulating learning process on continuous environments currently is not in the scope
of our project. We plan to conduct experiments only on discrete environments that
can be represented with a grid. For a future work, our method may be improved so that
it works on both discrete and continuous problems.

 1.3 Definitions, Acronyms, and Abbreviations

RL : Reinforcement Learning

RL-CD : Reinforcement Learning with Context-Detection

HRL : Hierarchical Reinforcement Learning

HRL-CD : Hierarchical Reinforcement Learning with Context-Detection

MDP : Markov Decision Process

SMDP : Semi-Markov Decision Process

SLWE : Stochastic Learning base Weak Estimation

SCD : SLWE Change Detection

BC : Betweenness Centrality

PQueue : Prioritized Queue

FOM : First Order Markov

SOM : Second Order Markov

HD : Hamming Distance

3 / 13

 2. Related Work

We have performed a detailed literature survey for our research and in this section Analysis
and Design Document, we explain each related paper with giving information about how the
paper and our work is related.

Dealing with Non-Stationary Environments using Context Detection

In the work of da Silva, Basso, Bazzan and Engel [1], authors introduced “RL-CD” which is a
method for solving reinforcement learning problems in non-stationary environments. Their
method is based on creating, updating and selecting one among several partial models of the
environment and it makes the learning system capable of partitioning knowledge into
models. The non-stationary environments that are covered by the authors on this work are
those whose behavior is given by one among several different stationary dynamics. Each of
these dynamics is called a context. The authors assumed that each context can be detected
by only tracking the transitions and rewards. The contribution they made is that they
overcame an important restriction of previously proposed methods, which is requiring a
fixed number of models. RL-CD dynamically creates a new model if the quality of the best
model is still worse than some minimum quality. At any time, only the model with the
highest quality is activated. They presented empirical results of RL-CD for three different
validation scenarios. One of them is “Ball Catching” which we would like to create a similar
experiment for testing our method.

Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement
learning

In the work of R. S. Sutton, D. Precup, S. Singh [2], authors worked on an important
challenge of Artificial Intelligence, which is representing knowledge at multiple levels of
temporal abstraction. Their research is focused on addressing this challenge within the
mathematical framework of Reinforcement Learning and Markov Decision Processes
(MDPs). They extended the usual notion of action in Reinforcement Learning framework to
include temporally extended actions. Options can be considered as policies for taking
actions to reach a sub-goal over a period of time. A set of options defined on MDPs creates a
semi-Markov Decision Process (SMDP). Extending their work to deal with non-stationary
environments is the main motivation for us on this project.

Hierarchical Reinforcement Learning with Context Detection (HRL-CD)

In the work of Y. E. Yücesoy and M. B. Tümer [4], the authors proposed an autonomous
agent which learns a dynamic environment by taking the advantage of Hierarchical
Reinforcement Learning. They presented their empirical results the grid world problem
with different dynamics. We noticed that the weak point of this method is that it fails to
detect slight changes in the environment. We hope to contribute their work by proposing a
more sensitive method using our Change Point Detection algorithm which uses Stochastic
Learning based Weak Estimation (SLWE). Combining these two studies is the main goal of
our project.

4 / 13

 3. System Design

 3.1 System Model

Environmental changes should be detected as the agent learns and the learning
process must be intervened according to magnitude and structure of environmental
changes. In this context, learning of the agent and the detection of changes in non-
stationary environments can be expressed as a client-server connection. On the client
side, while learning is being done by the agent, at certain time intervals, server (SCD)
will respond to agent whether the environment has changed, and if so, how the new
learning process should continue.

As seen in the communication diagram above, the changes will be detected by
observing the actions of the agent because if the environment changes, the reward
values which are responses of the environment to actions of the agent will also change.
After SCD observes the action sequence, it will inform to agent about the current state
of the environment. This information may be:

• No change in the environment, continue learning.

• Change has been detected! An environment you have not encountered before,
learn from scratch!

• Change has been detected! Model of this environment exists in your memory,
continue with this model.

• Change has been detected! Only a certain part of the environment has
changed, just relearn that part.

5 / 13

Figure 2: Communication between change detection and learning processes

 3.2 Flowchart and/or Pseudo Code of Proposed Algorithms

As mentioned above, our project has two main processes which are continuously in
communication. In the first process, agent learns the environment with RL algorithms
which are Q-Learning, PS and HRL and listens to response messages from second
process. If any change is detected in environment either a new model will be created or
a model from memory will be loaded. In both cases, an old model will be saved to the
memory.

In server side, detection process will wait until the learning process sends actions that
the agent performed. When the server receives the actions, it starts tracking Markov
Dependencies and sends back the information whether the environment is changed or
not.

6 / 13

Figure 3: Flow diagram of the learning module.

Figure 4: Flow diagram of change detection module.

Algorithm: Hierarchical Reinforcement Learning

Initialize Q0(s, a), Model0(s, a) and PQueue to empty, Current Context c = 0

Do forever

s = current state, a = policy(s, Qc)

Time-step count, k = 0

(s', r, k) = execute(s, a)

Update E values of every context considering <s, a, s', r>

c = Context of Emax

Update Tc and Rc for current context c

Modelc(s, a) = (s', a, r, k)

p = r + γkmaxaQc(s, a) – Qc(s, a)

if (p > Ө)

Insert (s, a) into PQueue with priority p

Repeat N times while PQueue is not empty

(s, a) = pop from PQueue

(s', r) = Modelc(s, a)

Qc(s, a) = Qc(s, a) + φ[r + γkmaxa'Qc(s', a') - Qc(s, a)]

Repeat for all s'', a'' predicted to lead to s

r'' = predicted reward from Model

p = r'' + γkmaxa'Qc(s, a) – Qc(s'', a'')

if p > Ө

push (s'', a'') into PQueue with priority p

If end of the episode

Search sub-goals with Betweenness Centrality

If Variance of Sub-goal counts < 1

Create options

Learn options

Algorithm 1: Hierarchical Reinforcement Learning algorithm [4].

7 / 13

 3.3 Comparison Metrics

There are few metrics being used for measuring the learning performance of
Reinforcement Learning algorithms. Specifically, on the grid world problem, the
agent’s objective is to reach the goal state with the minimum number of steps. This
makes the number of steps a good concept for tracking convergence and divergence of
learning process. We expect to get instant jumps on the step count curve after the
current behavior of environment changes.

Moreover, we are planning to use the sequence of actions as an input to the change
point detection algorithm we developed. The change points we get from the algorithm
will be compared with the true change points we expect to get. We know these true
change points because while conducting experiments, we will determine the points
where the current behavior of the environment changes. We are planning to use
Standard Accuracy Criteria (SAC) for measuring the success of behavior change
detection.

Change Present Change Absent Total

Change Detected a b a+b

Change not Detected c d c+d

Total a+c b+d a+b+c+d

Table 1: Symbol Definitions for Change Point Detection Results

Measure Name Definition Ideal Value

Sensitivity
a
a+c 1

Specificity
d

b+d 1

False Negative Rate
c

a+c 0

False Positive Rate
b

b+d 0

Predictive Value Positive (PVP)
a

a+b 1

Predictive Value Negative (PVN)
d

c+d 1

False Alarm Rate
b

a+b 0

False Reassurance
c

c+d 0

Table 2: Definitions of Standard Accuracy Criteria

8 / 13

 3.4 Data Sets or Benchmarks

The current version of project is an offline version of what we planned. So, we get data
from RL training and we know time points where the environment is changed. We
change the environment several times while agent learns and agent does not know that
the environment has changed. When the agent completes training we get the action
sequence of agent that the agent has performed during the traning time.

Our data, the action sequnce is one dimensional data which is the combination of four
elements; left, right, down and up. According to grid size and RL parameters the size of
our data changes. For example; when we increase grid size linearly, the size of our data
increases exponentially. The other factors which affect data size are parameters and
one of the most important parameters is epsilon because epsilon affects data size
directly. Epsilon is the probability of non-greedy action selection. When we decrease
epsilon, traing time gets longer.

As mentioned above, our data is one dimensional and combination of 4 elements. We
know where we have change points (i.e. where the environment is changed). We
analyse data with SCD process and we expect to find true change points.

 4. System Architecture

We have two main modules which are learning module and change detection module. The
general view of the communication between these modules can be represented with the
figure below.

9 / 13

Figure 5: Communication between two main modules: HRL: Learning Module, SCD:
Change Detection Module

The data/control flow of Learning Module can be expressed with the following figure.

 5. Experimental Study

We plan to test our algorithm with the experiment sets we design in order to measure the
SAC metrics we explained in the “Comparison Metrics” part of this document.

Since our research in on non-stationary environments, we plan to conduct experiments that
include multiple environments with random switching points. The important point about
length of regimes is, each regime should be given enough time to allow the convergence of
Markov Dependencies.

10 / 13

Figure 6: Detailed flow diagram of learning module.

Another important criteria about the experiment sets is, the difference of consecutive
regimes. Since we detect changes by tracking the FOM dependencies, the peak we get on the
change score curve gets higher if the changes on the FOM dependency curves are more
drastic. This makes detecting a change between completely different regimes easier. This
will also be a parameter we want to observe the effect on our controlled experiments. The
difference between environments can be expressed with the Hamming Distance of the
optimal action sequences of those environments.

Another important parameter we want to see the effect of is the probability of non-greedy
action selection. This probability makes the agent explore the environment and discover
new paths & states. In Reinforcement Learning framework, this probability is expressed with
the parameter . We plan to run experiments with different values and different decay ε ε
factors. We can consider the effect of as noise since it makes the agent select a non-greedyε
action.

Here is a preliminary experiment result we conducted by using the artificial data we
generated by combining the optimal action sequences of three different regimes. This
sequence is quite similar to what we expect to get from our online system we explained in
the “System Design” part of this document.

11 / 13

Figure 7: Peaks of change score curve indicate change
points on the non-stationary action sequence.

 6. Tasks Accomplished

 6.1 Current State of the Project

To explain the current state of the project, we should take our project as two sub-
projects; Reinforcement Learning and Change Detection.

In Reinforcement Learning side, we have implemented two basic learning algorithms;
Prioritized Sweeping and Q-Learning. Our software that we designed on Python for the
learning part of the project supports multi environments and also our software has
betweenness centrality calculator tool and all the way we implemented those are
compatible with Hirarchial Reinforcement Learning. We also have an alternative
version of Q-Learning that is written in C, in case of a situation that we need to
generate action sequences faster.

In Change Detection side, we have finished SCD implementation on MATLAB and it
can run a set of experiments but the constraint we have is that SCD shoud be as fast as
possible. Response time of SCD is not acceptable for an online system with MATLAB.
So we re-implemented SCD on C++ in order to make it more responsive.

 6.2 Task Log

During this semester, we had meeting with our advisor each week on Monday.
In these meetings, we reported our weekly progress and we made brainstroms
with our advisor about existing and possible problems we had on our research.

We compared and analyzed the results we obtained from our preliminary
experiments. We have done risk analysis against possible problems, for example
what to do if the data is too large or the SCD is weak against small changes.

Until now, we have observed promising experimental results with different
parameters in different environments which are approved by our advisor.

 6.3 Task Plan with Milestones

The most important task that should be completed immediately is finishing
improvement and publishing SCD C++ implementation. We have some real world
industrial data and we will publish our SCD algorithm after we get expected results
from industial data before second semester.

HRL impementation is also a very important task for improving our project because Q-
Learning and PS algorithms becomes infeasible on environments with large state
spaces. Once we implemented HRL, we will be able to run experiments on more than
100x100 grids. The second task about HRL is HRL-CD implementation. We want to re-
implement HRL-CD which is written by Yücesoy and Tumer and as a contribution, we
will test HRL-CD on ball catching problem instead of grid world problem.

Currently, we can manually run our experiments with the C++ implementation of SCD.
So our other task is to complete improving SCD and new version will be able to run a
set of experiments automatically. Our other task about SCD was writing muti-thread
support version but the response of SCD is fast enough on C++ for an online system, so
we removed this task from our list.

12 / 13

The main goal of the project is making an online end to end system which detects
changes while agent learns and SCD will send information about changes and agent
will update learning strategies according to this information. After we built end to end
sytem, we will test our results systematically.

 7. References

[1] Silva, B.D. da, Basso, E.W., Bazzan, A.L.C. & Engel, P.M., Dealing with Non-Stationary
Environments using Context Detection. 23rd International Conference on Machine
Learning (ICML), 2006.

[2] Sutton, R.S., Precup, D. & Singh, S., Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, pages 181-211,
1999.

[3] Sutton, R.S. & Barto, A.G., Reinforcement learning. Learning 3, 322, 2012.

[4] Yücesoy, Y.E. & Tümer, M.B., Hierarchical Reinforcement Learning with Context
Detection (HRL-CD). International Journal of Machine Learning and Computing, 7763,
2015.

[5] Freeman, L., A set of measures of centrality based on betweenness. Sociometry, 40:
35–41, 1977.

[6] Oommen, B.J. & Rueda, L. Stochastic learning-based weak estimation of multinomial
random variables and its applications to pattern recognition in non-stationary
environments. Pattern Recognition 39, 328-341, 2006.

13 / 13

