

Federated Semi-Supervised Medical Image Classification via Inter-Client Relation Matching Muhammed Said ÖZDEMİR Mais SABBAGH

mohammedozdamir@gmail.com

maissabbagh24@gmail.com

Assoc. Prof. Ömer KORÇAK

Prof. Dr. Çiğdem EROĞLU ERDEM

PROBLEM DESCRIPTION

Problems:

- ***** Label scarcity in healthcare data.
- *** Data privacy** concerns for patient information.

Solutions:

- *** Semi-supervised learning** for leveraging unlabeled data.
- * Federated learning for decentralized, privacy-preserving model training.

C IMPROVED FedIRM

- **Changing the Backbone Architecture**
- This improvement involves changing the backbone architecture from **DenseNet121** to **ConvNeXt Tiny**.

Why ConvNeXt?

- Features "Bottleneck Residual Blocks", reducing number of parameters for learning.
- * More parameters for complex feature learning and enhanced accuracy.

EXPERIMENTAL RESULTS

HAM10000 Dataset Results

*Overall accuracy improved by 1.22% when combining all improvements.

HENDISLIA

*Among the different improvements, **SMOTE** yielded the most significant results for all datasets.

	HAM10000					
Method	Accuracy	F1-Score	AUROC	Sensitivity	Specificity	
FedAvg (Liu,Yang, Dou, & Heng) Architecture: DensNet121 (10L / 0U)	97.09	96.99	97.42	79.44	97.14	
FedAvg (Liu,Yang, Dou, & Heng) Architecture: DensNet121 (2L / 0U)	94.57	94.31	92.11	64.04	95.33	
FedIRM (Liu,Yang, Dou, & Heng) Architecture: DensNet121 (Confidence Threshold: 0.3), (2L / 8U)	94.92	94.64	92.88	60.03	95.82	
FedIRM (Liu,Yang, Dou, & Heng) Architecture: DensNet121 (Confidence Threshold: 0.87), (2L / 8U)	95.20	94.81	93.89	58.49	95.42	
FedIRM (Covariance Matrix) Architecture:DensNet121 (Confidence Threshold: 0.87), (2L / 8U)	95.34	94.99	94.03	62.61	95.18	
FedIRM Architecture:Convnext-Tiny (Confidence Threshold: 0.87) , (2L / 8U)	95.34	95.10	95.49	62.40	95.90	
FedIRM (Group based averaging) Architecture:Convnext-Tiny (Confidence Threshold: 0.87), (2L / 8U)	95.55	95.16	95.70	57.66	96.12	
FedIRM (Org. Group Based Avg) Architecture:Convnext-Tiny (Confidence Threshold: 0.87), (2L / 8U)	95.51	95.19	95.26	59.08	96.38	
FedIRM (SMOTE) Architecture:Convnext-Tiny (Confidence Threshold: 0.87) , (2L / 8U)	95.88	95.71	96.70	69.19	95.98	
FedIRM (Combined) Architecture:Convnext-Tiny (Confidence Threshold: 0.87) , (2L / 8U)	96.14	95.99	95.70	71.34	96.56	
RSNA Dataset Results						

Human Against Machine (HAM10000)

- ***** Large, multi source images of pigmented skin lesions
- ***** 10015 Dermoscopic images.

DATASETS

***** Images categorized into 7 classes.

RSNA Intracranial Hemorrhage

- ***** Brain Hemorrhage dataset.
- *753,000 training images and 121,000 testing images.
- * CT scans categorized into 5 classes of intracranial brain hemorrhaging

Skin Lesion Images for Melanoma Classification

- * Oncological dataset.
- ***** 25,331 images.
- ***** Dermoscopic images categorized into 8 disease classes.

FedIRM

An algorithm combining Semi-Supervised and Federated Learning to leverage unlabeled data with local training at each client. [1]

disease relation estimation

 $\mathcal{M}^l = [S_1^l, \dots, S_C^l]$

- * Employs Global Response Normalization "GRN", to enhance feature diversity and mitigate feature collapse. Employs "GELU activation", for improving network efficiency.
- * We added a linear layer for a richer representation of the disease relation matrix using more features.

Linear Layer Linear Layer Number of 768 192 192 Dataset Classes \widehat{fp}_{θ} Features for Disease Matrix ConvNeXt-Tiny

Covariance Matrix for Class Distributions

- * Represents class distribution with pre-category mean feature vectors.(Equation 7)
- * Alternative to original **Disease Relation Matrix**.
- * Vectorized, normalized matrices for each class combined into a single matrix. (Equation 9)
- ***** Similar computation for unlabeled clients.
- * Goal: Minimize KL divergence for better accuracy in

*****Overall accuracy improved by **1.86%** when combining all improvements.

	RSNA				
Method	Accuracy	F1-Score	AUROC	Sensitivity	Specificity
FedAvg (Liu,Yang, Dou, & Heng) Architecture: DensNet121 (10L / 0U)	91.87	91.56	88.70	62.09	95.00
FedAvg (Liu,Yang, Dou, & Heng) Architecture: DensNet121 (2L / 0U)	89.10	88.89	83.48	57.69	92.99
FedIRM (Liu, Yang, Dou, & Heng) Architecture: DensNet121 (Confidence Threshold: 0.3), (2L / 8U)	89.63	89.20	87.02	55.92	93.89
FedIRM (Liu, Yang, Dou, & Heng) Architecture: DensNet121 (Confidence Threshold: 0.87), (2L / 8U)	90.00	89.41	86.46	54.32	93.83
FedIRM (Covariance Matrix) Architecture:DensNet121 (Confidence Threshold: 0.87) , (2L / 8U)	89.81	89.21	86.85	53.84	93.90
FedIRM Architecture:Convnext-Tiny (Confidence Threshold: 0.87) , (2L / 8U)	91.30	90.83	89.91	57.70	94.91
FedIRM (Group based averaging) Architecture:Convnext-Tiny (Confidence Threshold: 0.87), (2L / 8U)	91.19	90.75	87.33	58.93	94.07
FedIRM (Org. Group Based Avg) Architecture:Convnext-Tiny (Confidence Threshold: 0.87), (2L / 8U)	91.25	90.87	87.38	59.83	94.23
FedIRM (SMOTE) Architecture:Convnext-Tiny (Confidence Threshold: 0.87) , (2L / 8U)	91.40	90.95	89.81	58.53	94.60
FedIRM (Combined) Architecture:Convnext-Tiny (Confidence Threshold: 0.87) , (2L / 8U)	91.49	91.06	89.60	59.21	94.90

- ***** Mean feature vector computed for each class.
- * Mean vectors scaled to **soft labels** using softened softmax function. (Equation 1)

* Combination of all soft labels form a disease relation matrix. (Equation 2)

- * Labeled clients' DRMs averaged to form general disease relation matrix.
- Disease relation matrix utilized to aid unlabeled clients in learning.

 $V_c^l = \frac{1}{N_c^l} \sum \mathbf{1}_{[y_i^l = c]} \hat{f}_{\theta^l}(x_i^l)$

 $\sum_{i=1}^{B} \mathbb{1}[(y_i = c) . (w_i^u < h)]$

Disease Relation Estimation at Unlabeled Clients

- * Predicted probability vectors generate pseudo labels.
- * Predictive entropy filters out unreliable pseudo labels.
- * Remaining pseudo labels estimate **disease relation matrix**. (Equation 3)
- * Unlabeled clients align disease relation matrix with labeled

I Aggregation using Group-Based Averaging

* Alternative to Federated Averaging.

 $M_{cov} = [Z_1^l, \dots, Z_C^l]$

- ***** Reduces dissimilarity in local gradient updates.
- * Server collects model weights and forms equal sized random groups.

* Averaging is done within groups.

* Clients receive group's averaged weights.(Equation 10)

 $w_{avg,i}^{t+1} = (w_s^t + \sum_{k \in G_i^t} w_k^t) / (|G_i^t| + 1), \forall i \in \{1 \dots s\}$ Global aggregator $w_{avg}^{t+1} = (\sum_{i=1}^{S} w_{avg,i}^{t+1} / s)$ Global averaging

ISIC2019 Dataset Results

*****Overall accuracy improved by **1.43%** when combining all improvements.

	ISIC2019				
Method	Accuracy	F1-Score	AUROC	Sensitivity	Specificity
FedAvg (Liu,Yang, Dou, & Heng) Architecture: DensNet121 (10L / 0U)	96.70	96.61	96.25	77.31	97.60
FedAvg (Liu,Yang, Dou, & Heng) Architecture: DensNet121 (2L / 0U)	93.59	93.38	89.39	52.96	95.74
FedIRM (Liu, Yang, Dou, & Heng) Architecture: DensNet121 (Confidence Threshold: 0.3), (2L / 8U)	93.52	93.05	87.57	37.82	95.71
FedIRM (Liu,Yang, Dou, & Heng) Architecture: DensNet121 (Confidence Threshold: 0.87), (2L / 8U)	93.89	93.26	91.44	43.93	96.32
FedIRM (Covariance Matrix) Architecture:DensNet121 (Confidence Threshold: 0.87), (2L / 8U)	94.09	93.45	91.60	45.26	96.60
FedIRM Architecture:Convnext-Tiny (Confidence Threshold: 0.87) , (2L / 8U)	93.96	93.48	91.95	44.24	97.02
FedIRM (Group based averaging) Architecture:Convnext-Tiny (Confidence Threshold: 0.87), (2L / 8U)	94.06	93.55	91.46	44.41	96.56
FedIRM (Org. Group Based Avg) Architecture:Convnext-Tiny (Confidence Threshold: 0.87), (2L / 8U)	94.31	93.94	92.75	50.86	96.76
FedIRM (SMOTE) Architecture:Convnext-Tiny (Confidence Threshold: 0.87) , (2L / 8U)	94.85	94.34	94.10	46.97	97.48
FedIRM (Combined) Architecture:Convnext-Tiny (Confidence Threshold: 0.87) , (2L / 8U)	94.95	94.64	94.10	55.51	96.89

(@) Learning Objectives and IRM Loss Function

 $\sum_{i=1}^{B} \mathbb{1}[(y_i=c) \cdot (w_i^u < h)] \cdot p_i^u \quad M^u = [S_1^u, \dots, S_C^u]$

* Labeled clients employ Cross Entropy loss.(Equation 4) * Unlabeled clients utilize Consistency regularization.(Equation5) *** KL-Divergence** between disease relation matrices of labeled and unlabeled clients minimized for IRM loss.(Equation 6)

Group 3 Group 2 Group 1 Synthetic Minority Over-Sampling Technique * Synthesizes new minority class samples by interpolation. Achieves better results. Avoids majority class bias. ***** Enhances unsupervised minority training accuracy with unlabeled data. Original dataset Final dataset REFERENCES 1] Liu, Q., Yang, H., Dou, Q., & Heng, P. A. (2021, September). Federated semi-supervised medical image classification via inter-client relation matching. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 325-335). Springer, Cham. [2] RSNA Intracranial Hemorrhage Detection. (2019). Kaggle. https://www.kaggle.com/competitions/rsna-intracranial norrhage-detectio n/data (Date of access: 2024, January 26) [3] Skin Lesion Images for Melanoma Classification. (2019). Kaggle. https://www.kaggle.com/datasets/andrewmvd/isic-2019 (Date of access: 2024, January 26). [4] Skin Cancer MNIST: HAM10000. (2018). Kaggle. https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000 (Date of access: 2024, January 26). [5] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie "A ConvNet for the 2020s" arXiv:2201.03545v2 [cs.CV] 2 Mar 2022. [6] G. Tian, Z. Wang, C. Wang and J. Chen, "A deep ensemble learning-based automated detection of COVID-19 using lung CT images and Vision Transformer and ConvNeXt," 2022. [7] H. Wei, "Medium," [Online]. Available: https://medium.com/@haataa/fighting-imbalance-data-set-with-code-examples-[2a3880700a6. [Accessed 21 05 2024]

Local aggregators

- * This project aims to enhance the original algorithm through an ablation study.
- * Changes included altering backbone architecture, integrating a covariance matrix, offering an alternative aggregation method, and implementing oversampling for balanced class distributions.
- * All these modifications outperformed the original research metrics.
- * In the future, FedIRM can be aligned with **non-independent** and non-identically distributed settings, improving its robustness and performance with real-world datasets.