
Technologies Used References
[1] Panagiotis Gkonis , Anastasios Giannopoulos , Panagiotis Trakadas, Xavi Masip-Bruin & Francesco D’Andria, A Survey on IoT-Edge-Cloud Continuum Systems: Status,
Challenges, Use Cases, and Open Issues, MDPI, November 2023.

[2] Quang-Minh Nguyen, Linh-An Phan & Taehong Kim, Load-Balancing of Kubernetes-Based Edge Computing Infrastructure Using Resource Adaptive Proxy, MDPI, April 2022.

[3] Ying Xiong, Yulin Sun, Li Xing, Ying Huang, Extend Cloud to Edge with KubeEdge, IEEE, December 2018.

[4] Abhijeet Dhane, Atharva Joshi, Chinmay Borgaonkar, Manas Deshpande, Pravin Patil, A Survey on Deploying Prometheus and Grafana for Application Monitoring, JETIR,
January 2024.

[5] Khaldoun Senjab, Sohail Abbas, Naveed Ahmed1, & Atta ur Rehman Khan, A survey of Kubernetes scheduling algorithms, SpringerOpen, June 2023.

References

Conclusion

Advisor: Assoc. Prof. Müjdat Soytürk

Anılcan Erciyes 
anilcanerciyes@marun.edu.tr

Oruç Berat Turan

oruc.berat@marun.edu.tr

Mehmet Akif Gülmüş 
makifgulmus@gmail.com

A Scheduler for Resource Allocation in Cloud-Edge Continuum

Vehicular Networking and Intelligent Transportation Systems
Research Laboratory

Introduction

The Edge-Cloud Continuum introduces a novel approach to
computing. Instead of solely relying on central servers, which can
increase latency, now the data can also be processed closer to
the source at the edge level. This enhances performance, privacy
and flexibility, since processes can be selected to run on the
cloud or at the edge, depending on current needs and
requirements of the system. Such adaptable approach improves
efficiency and responsiveness, making it ideal for applications
requiring real-time data processing, such as IoT devices [1].

Solution Methodology

1 - Employed KubeEdge to set up a physical edge
computing cluster, located in Dragos campus, which

comprises a control plane and several connected edge
devices over a LAN switch [3].

2 - Emulator programmes are created for generating
artificial workloads to simulate real-world conditions. In

this regard, stress testing tools (i.e., stress-ng) are used.
These programmes are then containerized with Docker,

to be deployed on various nodes within the edge
computing cluster with flexible and configurable

parameters.

3 - To monitor resource usage metrics across the nodes
of the cluster, Prometheus and Grafana are used [4]. The
Prometheus server, integrated with the KubeEdge cluster,
collects and exposes detailed performance data, which is

also accessed by the Python-based scheduler script.

3 - The scheduler operates by periodically assessing the
current resource utilization of each node. If the script
detects that any node exceeds predefined workload

thresholds (i.e., for CPU or memory usage), it initiates a
process to redistribute the workload by redeploying
certain pods to alternative machines within the edge

computing cluster to prevent performance degradation &
overload [5].

5 - Various test cases and scenarios are run to observe
how system stability is maintained, enhancing the overall

efficiency and reliability of the edge computing
environment. Clear observations on how the scheduler

can decide to transfer a pod to another node (depending
on the current workload of the system) is made. Overall

efficiency and balance is observed to be improved.

High-Level System Architecture

Experimental Results

Charts: %CPU utilization on nodes, measured every 5 minutes

Without the scheduler

Imbalanced cluster workload

Poor computational efficiency

Application delays & latency

Higher risk of node failures

Scheduler added

Much better load distribution

Stable cluster performance

Constant, real-time optimisation

Pod redeployment capability

-> Our project successfully established a KubeEdge cluster to represent the edge-cloud continuum. Containerized
stress testing applications were deployed on any desired machine for easily configurable workload generation.

-> A constant monitoring system was successfully built, and the resource consumption of each node was tracked and
visualized in real-time for various metrics.

-> A threshold-based real-time scheduler were successfully implemented, enabling an optimized decision-making,
with the ability to transfer a pod to more suitable node when an overload was detected. Throughout the tests, no

single device in the model system bore more load than the predefined threshold of 70% resource capacity.

While the Edge-Cloud Continuum offers numerous
benefits, efficient load balancing mechanisms are
much needed in this context.

The selection of nodes for deploying new pods/
processes must prioritize efficiency to ensure
overall system stability, a well-balanced load
distribution, and low latency for applications [2].

Therefore, deciding on which node to deploy an
incoming process is crucial for maintaining the
actual objectives and to fully leverage the
advantages of a joint edge-cloud system.

Problem Statement

