

HIFOR

HYBRID HIERARCHICAL DEMAND FORECASTING FRAMEWORK FOR SUPPLY CHAINS

Ümit Kaan Usta umitkaan19@marun.edu.tr

Süleyman Emirhan Uslu suleymanemirhanuslu@icloud.com

Gökberk Köksoy gokberkkoksoy@icloud.com

Supervisor: Prof.Dr. Çiğdem Eroğlu Erdem

Research Mentorship by Amazon

LEVEL 8

MiddleOut

Forecasts

LEVEL 9

INTRODUCTION

Background

- Forecasting: Predict future from past
- Hierarchy: Parent-child relationship btwn time-series
- Accuracy \rightarrow \$\$ savings, meet demand, less idle capacity, no out-of-stock [1]

Challenges

- **1.** Combine HF methods on a base model
- 2. Combine base models on an HF method

How hierarchical forecasting (HF) works

Idea: Take prediction at single/multiple levels, expand into all levels of the hierarchy

Predicted values **Actual values** Level 1 Level 1 Prediction Level 2 Expand prediction Level 2 Prediction to all levels Hierarchical Forecasting Level 3

DATASET

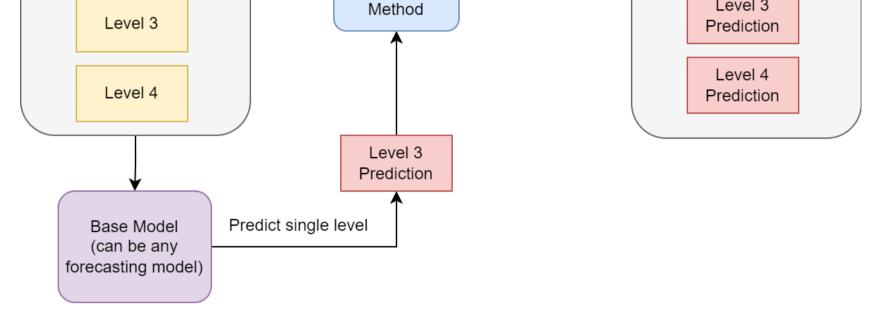
- Subset of Kaggle M5 Competition Dataset [2], A well-known & representative benchmark [3]
- Hierarchical demand forecasting competition on Walmart's daily sales data
- 5 years of daily sales (2011-2016), 9 levels, 154 time-series

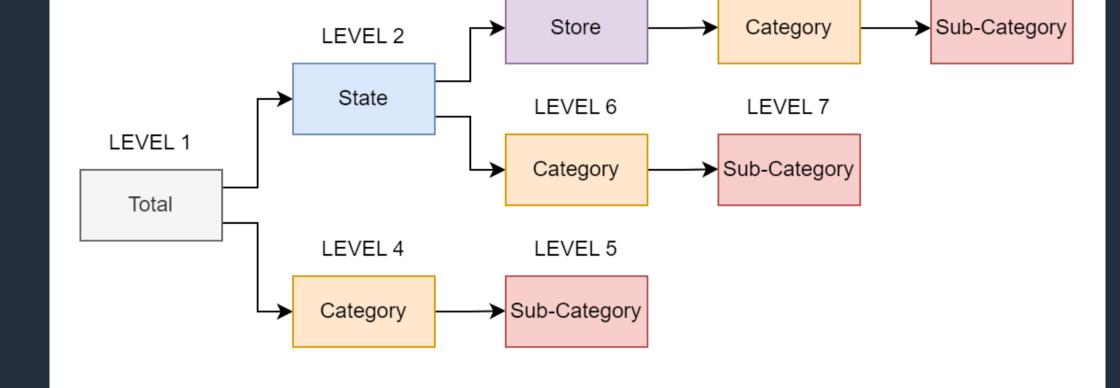
LEVEL 3

• Forecast 28 days ahead

Our solution

- Combine base models & different HF methods
- Customizable "forecasting units" for each level
- RNN-like approach
 - Traverse the hierarchy top-down
 - Output of previous level = feature of next level (hidden state)
- Post-process to ensure coherency





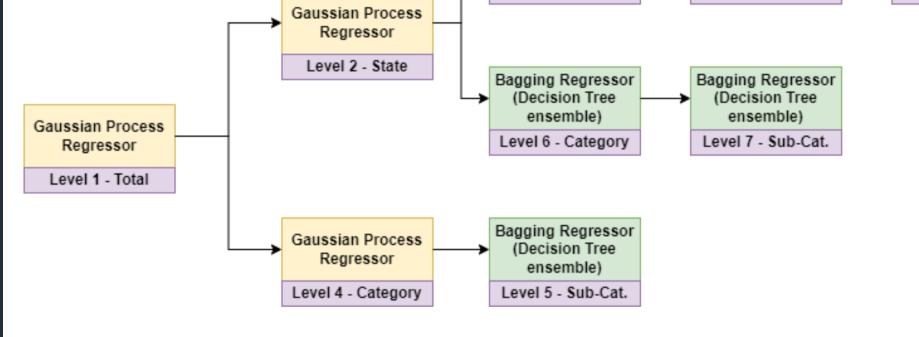
HOW HIFOR WORKS Forecasting Unit - building block of HiFor Each level L is forecasted by a "Forecasting Unit (FU)" A deeper dive - How HF methods are combined Features: HF methods to be combined + Hidde Forecasting Unit Prev. FU inputs Forecasting Unit Forecast Level Parent[L] Forecasting outpu Unit of Level L Level L eatures - Level Forecasting User inputs Level L Model M Base models Unit Hidden state to all Children[L] User defines order of traversa Mode Model M Level L Untrained Model M Forecast - Level L Any Sklearn-compatible model can be used in a Forecasting Unit A network of forecasting units Summary An example hierarchy with 4 levels Task 1 - HiFor as Reconciler: Combine HF methods on some base model Pred[L1] FU

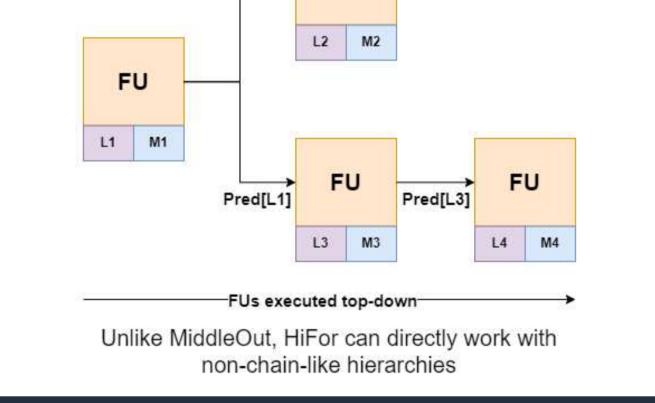
METHODOLOGY

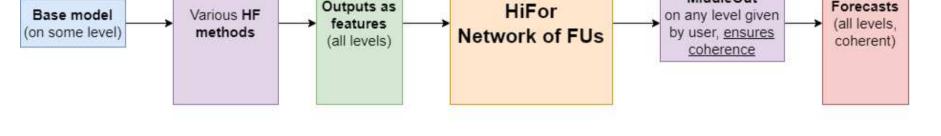
Experiment settings

- Experiments for Task 1 (Reconciler) & Task 2 (Ensembler)
- Base models (on levels 3, 8, 9)
 - Statistical: AutoARIMA
 - LGBM + auto-feat-eng: LGBM+catch22, LGBM+TSFresh
 - M5 top solutions: M5-winner, M5-2nd, M5-3rd
- HF methods
 - Simple: BottomUp, MiddleOut
 - Model-based: MinTrace (MinT), Weighted Least Squares (WLS)
- HiFor settings
 - Traversal order: Level $1 \rightarrow$ Level 9
 - Coherence step: MiddleOut on Level 8
 - Model choices see below:

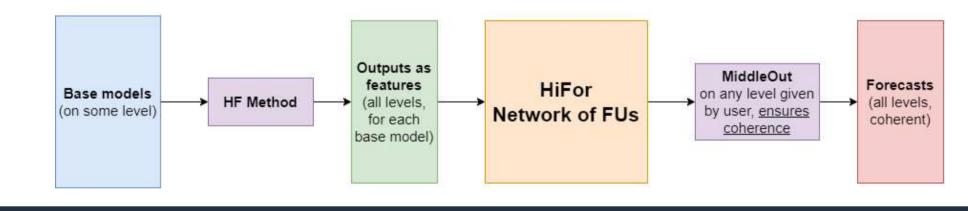
[,	Bagging Regressor (Decision Tree ensemble)	 Bagging Regressor (Decision Tree ensemble)	 Bagging Regressor (Decision Tree ensemble)	
	Level 3 - Store	Level 8 - Category	Level 9 - Sub-Cat.	







Task 2 - HiFor as Ensembler: Ensemble base models on some HF method



EXPERIMENT RESULTS

Loss Function - WRMSSE (Weighted Scaled RMSE)

- "How much does the MSE improve on Naive forecast?"
- Lower is better
- Naive forecast: Taking day-1 value as forecast

 $RMSSE = \sqrt{\frac{MSE}{MSE \text{ of Naive Forecast}}}$

- $WRMSSE_{level} = \sum (AvgSalesPrice_{level,ts})(RMSSE_{level,ts})$
- 'ts' stands for each time-series in a given level
- WRMSSE > 1 \rightarrow worse than Naive forecast
- Avg WRMSSE = Equal weighted avg of all levels

Results - improvements shown in bold

HiFor as Reconciler: Single base model, combine mult. HF methods

Base Model	HiFor (ours)	Best HF Method	Improvement%
LightGBM+TSFresh	0.543	0.582 (MiddleOut on Level8)	7.16
AutoARIMA	0.644	0.680 (MiddleOut on Level8)	5.71
LightGBM+Catch22	1.651	1.672 (MiddleOut on Level8)	1.29
M5-Winner	0.995	1.003 (MiddleOut on Level8)	0.80
M5-2ndPlace	0.984	0.988 (MiddleOut on Level8)	0.41
M5-3rdPlace	0.995	0.999 (MiddleOut on Level8)	0.39

HiFor as Ensembler: Single HF method, combine mult. base models

HF Method	HiFor (ours)	Best Base Model	Improvement%
MiddleOut on Level3	0.656	0.673 (LightGBM+TSFresh)	2.54
MiddleOut on Level8	0.57	0.582 (LightGBM+TSFresh)	2.18
MiddleOut on Level9	0.526	0.515 (LightGBM+TSFresh)	-2.01

used as the metric to compare models

*Experiments with HF methods MinT, WLS pruned due to no base model having WRMSSE < 1 with them

Code available on GitHub: github.com/umitkaanusta/hifor-experiments

Runtime of HiFor: ~3min for this config on AWS EC2 c4.xlarge (4 vCPUs, 8GB RAM)

CONCLUSION & FUTURE WORK

- HiFor overperforms all widely used HF methods in reconciliation, and performs well in ensembling
- Can work in non-chainlike hierarchies (unlike MiddleOut)
- Can work with only a single level of base model forecasts (unlike MinT, WLS)
- Experiment with different datasets & domains
- Compare with newer but less known HF methods
- Publicize HiFor and gather user feedback

TECHNOLOGIES USED NumPy pandas kaggle 🗲 LightGBM

REFERENCES

[1] R. J. Hyndman, G. Athanasopoulos, Forecasting: Principles and Practice (2nd ed). Melbourne: Otexts, 2018.

[2] Kaggle M5 Forecasting Competition Dataset. [Online]. Available: https://www.kaggle.com/c/m5-forecasting-accuracy (Date of access: 26/11/2022).

[3] E. Theodorou, S. Wang, Y.Kang, E. Spiliotis, S. Makridakis, V. Assimakopoulos, "Exploring the representativeness of the M5 competition data", International Journal of Forecasting, vol. 38, no 4, pp. 1500-1506, 2022.