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Real-world problems mostly have a continuous state/action space. Skill Coupling 
(SC) [1] is a method proposed only for discrete environments. SC solves the 
oversegmentation problem in Dynamic Community Detection (DCD) algorithms. The 
motivation of this project is to create a setup for continuous domains before the SC 
method can be used.

Problem:
Solution: 

 Community Detection and Skill Construction 

A DCD algorithm named Dynamo [4] can detect communities.



 Skill Learning and Learning the Sub-policies of Skills

With SARSA and Intra-Option Learning, primitive actions and skills 


can be learned. 



 Skill coupling is applicable or not

After proper setup, SC algorithm can be implemented and examined. 

Problem
Solution: 

Problem:
Solution: 

Reinforcement learning (RL) is a type of machine 
learning technique where an agent takes an 
action in an environment, moves to the next state, 
and receives the environment’s feedback (reward 
or punishment) regarding that action. 

As the environment grows too large, converging to a satisfactory policy for regular RL 
algorithms such as flat Q–learning becomes quickly infeasible.



In HRL [3]
 Environment is split into sub-regions (communities)
 A sub-policy (sequence of primitive actions) is learned for each sub-region
 The sequence of primitive actions is called skill/option.
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Pinball is one of the most challenging environments for RL algorithms because of its 
dynamic aspect, sharp discontinuities, and extended dynamics control characteristics.



There are five primitive actions: adding or subtracting a small force to x 
velocity or y velocity, or leaving them unchanged 


= (x_coordinate, y_coordinate, x_velocity, y_velocity)

Manoeuvre the blue ball into the red hole

Actions: 

Representation of a state (4D) 
Goal: 

 Skill coupling will be enabled for hard 
environments

 Experiments with different environment 
settings

 Improvements for sub-policies of skills



 Community detection using connectivity graph with Dynamo  
does not have the problem of oversegmentation. So, skill 
coupling is not needed for env 1

 SARSA with skills algorithm for pinball domain converges to 
a sub-optimal policy

 CG, DynaMo and an algorithm like Intra-Option Learning 
work well together.

The combination of a transition Graph (TG) and power-law distance graph (DG) is called 
a connectivity graph [2]. This graph will be the input to the our DCD algorithm that 
finds the communities. This method is called Graph-Based Skill Learning (GSL) [2].

 Connectivity Graph (CG) for Community Detection

Problem:
Solution

 Continuous State Space

: Since states are Non-Markov, there must be a 


function approximation or state aggregation process. 

Fourier Basis is used.
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Table 1.  Qtable for an 
environment that has a finite 
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Fig 8. Q-value approximation using  Fourier basis 

Since the states cannot be 
represented with a Q-table like in 
Table 1, in continuous domains, 
function approximation methods 
that return the Q-value of a given 
encoded state for actions are 
required.

An option consists of three components: a policy π: S×A → [0,1], an initiation set IS 

and a termination condition β: S+ → [0,1]
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State coordinates: (0.x, 0.y)       label = xy 

Table 2. Comparison of algorithms in env1  in terms of, number

 of steps to the goal state, and number of decisions.

  Primitive action                                  Skill  




