

REAL TIME VIOLENCE DETECTION FROM SURVEILLANCE VIDEOS

Alperen Bayar alperenbayaar@gmail.com

• Feature Extraction:

pretrained C3D model.

• Violence Recognition:

• Violence Detection:

using a model.

the third model.

• Notification:

Converting videos to "txt" files with

Detecting is there a violence or not with

If there is violence, to determine whether

the type is fight or vandalism with using

To inform the required units instantly.

Büşra Yağcı bbusrayagci@gmail.com Nuri Yıldız nuriidyliz@gmail.com

Advisor: Prof. Dr. Çiğdem Eroğlu Erdem

INTRODUCTION

Problem and Solution

The aim of this project is decreasing **manpower** and **cost** with **autonomous detection**, recognition and notification.

FEATURE EXTRACTION

MODELS

Detection and Recognition

METHODOLOGY Strategy and System Design

STEP 01	Feature Extraction from Video	
STEP 02	Violence Detection	
STEP 03		
	Violence Recognition	
STEP 04		
	Real Time Notification	

FLOWCHART

VIOLENCE DETECTION

Training Data

VIOLENCE RECOGNITION

C3D

Training Data

This project focused on real-time detection.

To achieve real-time detection aim, the system needs to process **fast** enough. The categories to be detected are classified as fighting and vandalism. **MA**

The other types of violence (assault, robbery, shoplifting etc.) are classified as the third category. (maybe helpful for future works with extended scope)

IMPORT DATA

DATA SETS

UCF Crime Dataset (1)

► //// : 5 second intersection between two video pieces

• 1900 videos

→ ----- : 1 minute length video input for processing

- 5 seconds of each video track will intersect with each other.
- The reason we do this is to prevent problems in detecting events that will occur at the beginning or at the end of the video tracks.

Detail of recognition model

EXPERIMENTS

Tests & Results

In UCF Crime Data set;

Detection model was trained with 338 violent and 886 non-violent videos. Recognition model was trained with a data set containing nearly 50 videos from each category.

UCF Crime Dataset	SVM		FC	
	Detection	Recognition	Detection	Recognition
Precision	0.88	0.56	0.90	0.61
Recall	0.96	0.51	0.94	0.60
F1	0.92	0.50	0.92	0.60
Accuracy	0.88	0.50	0.88	0.60
Time(s)	40±2.87	14.2±1.78	0.328	0.721 ± 0.234

*The average accuracy rate of violence recognition models on 13 types is nearly %30 in the literature.

In UCF Crime + NTU CCTV Fight Data set;

Detection model was trained with 857 violent and 886 non-violent videos. Recognition model was trained with 619 fight, 50 vandalism and 50 other videos.

UCF Crime	SVM	FC

Example Frames

• Total 128 hours • 13 different types • 7247 average frames

Explosion

Fight in custody

Types 1. Abuse 8. Fighting 9. Robbery 2.Arrest 10. Shooting 3.Arson 11. Stealing 4.Assault 5. Road Accident 12. Shoplifting 13. Vandalism 6.Burglary 7. Explosion and non-violent

	Videos	Durations (h)
All	1,000	17.68
CCTV	280	8.54
Non-CCTV	720	9.13
	All CCTV Non-CCTV	Videos All 1,000 CCTV 280 Non-CCTV 720

NTU CCTV Fight Dataset (2)

Fight in traffic

Example Frames

UCF Crime / NTU CCTV Fight

Mobile cameras Car cameras Drones Helicopters

Fight video recorded by phone camera

	Detection	Recognition	Detection	Recognition
Precision	0.88	0.53	0.93	0.29
Recall	0.96	0.53	0.93	0.33
F1	0.92	0.53	0.93	0.31
Accuracy	0.88	0.90	0.93	0.88
Time(s)	33 ±1.3	19.4	0.307 ±0.136	0.705±0.106

CONCLUSION

TECHNOLOGIES

REFERENCES

1.https://www.crcv.ucf.edu/projects/real-world/ (Date of access: 07/06/2020) 2.http://rose1.ntu.edu.sg/Datasets/cctvFights.asp (Date of access: 07/06/2020) 3.https://research.fb.com/blog/2014/12/c3d-generic-featu-

- res-for-video-analysis/ (Date of access: 07/06/2020)
- 4. Icons by freepik.com, flaticon.com, iconfinder.com
- Since the main purpose of the project was to enable early intervention to fight and vandalism, we developed a slightly lower accuracy but 20% faster approach instead of complex models in the literature.
- The system we developed was made to reduce the manpower required to monitor, not to decide instead of the authorities. That's why success of detection is more important than recognize success.